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Supervisor’s Foreword

Symmetries play a key role in our understanding of Nature. For instance, all of
particle physics crucially relies on the Poincaré symmetry group of Minkowski
space-time. Once gravity is switched on, however, the isometry group of generic
space-time manifolds is empty and Poincaré symmetry becomes irrelevant. What
replaces it are asymptotic symmetries: Those are the symmetries of a space-time
manifold seen by a “faraway” observer.

About fifty years ago, Bondi, Metzner, van der Burg, and Sachs studied the
asymptotic symmetries at null infinity of Einstein gravity on a Minkowskian back-
ground. What they found, quite surprisingly, was that Poincaré symmetry is extended
into an infinite-dimensional group now known as the Bondi-Metzner-Sachs
(BMS) group. More recent developments confirm that such infinite-dimensional
extensions of exact isometries are actually quite common. In addition, there are
reasons to believe that BMS symmetry can be extended further so as to contain local
conformal transformations; in that picture, BMS consists of infinite-dimensional
“superrotations” and “supertranslations” in the same way that the Poincaré group
consists of finite-dimensional Lorentz transformations and translations.

Ever since its discovery, the BMS group has been conjectured to play a central
role in the quest for a quantum theory of gravity. In the last couple of years, exciting
new proposals indicate the existence of hitherto unexplored degrees of freedom,
closely connected to and controlled by the BMS group, that may eventually account
for the Bekenstein-Hawking entropy of realistic black holes in four dimensions.

The complexity of the four-dimensional problem suggests that a good strategy is
to turn to a toy model. A natural candidate is provided by three-dimensional gravity,
where beautiful asymptotic symmetry groups have been known to exist ever since
the work of Brown and Henneaux in the eighties. Accordingly, this thesis is
devoted to BMS symmetry in three space-time dimensions. It addresses the specific
problem of classifying the irreducible unitary representations of BMS3 (“BMS
particles”), and relating them to quantum gravity. The material is presented in a
self-contained and pedagogical manner, with all the necessary background collected
in the first seven chapters. This allows the reader to fully appreciate the original
results that have been obtained while learning many fundamental concepts in the
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field along the way. It makes the present work a perfect point of entry into the
matter and a most rewarding read for anyone with a serious interest in BMS
symmetry, or asymptotic symmetries in general.

Brussels, Belgium
June 2017

Prof. Glenn Barnich
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Abstract

This thesis is devoted to the group-theoretic aspects of three-dimensional quantum
gravity on Anti-de Sitter and Minkowskian backgrounds. In particular, we describe
the relation between unitary representations of asymptotic symmetry groups and
gravitational perturbations around a space-time metric. In the asymptotically flat
case, this leads to BMS particles, representing standard relativistic particles dressed
with gravitational degrees of freedom accounted for by coadjoint orbits of the
Virasoro group. Their thermodynamics are described by BMS characters, which
coincide with gravitational one-loop partition functions. We also extend these
considerations to higher spin theories and supergravity.
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Preface

This thesis collects thoughts and results that originate from a four-year-long
research project in theoretical physics. The main topic is representation theory and
its application to quantum gravity, in particular in the context of BMS symmetry.
The text consists of three parts:

Part I: Group theory;
Part II: Virasoro symmetry and AdS3/CFT2;
Part III: BMS symmetry in three dimensions.

It is written in such a way that each part can be read more or less independently
of the others, although the later parts do depend on background material presented in
the earlier ones; the logical flow of chapters is explained in Sect. 1.5. A few sections
are marked with an asterisk; they contain somewhat more advanced material that
may be skipped without affecting the reading of the main track.

Brussels, Belgium Dr. Blagoje Oblak
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Chapter 1
Introduction

The quantization of gravity is one of the long-standing puzzles of theoretical physics.
The purpose of this thesis is to study certain aspects of the problem that can be studied
on the sole basis of symmetries, without any assumptions on the underlying micro-
scopic theory. In this introduction we describe this strategy in some more detail,
starting in Sect. 1.1 with a broad overview of asymptotic symmetries in general and
Bondi-Metzner-Sachs (BMS) symmetry in particular. We then introduce the distinc-
tion between global and extended BMS groups in Sect. 1.2. Section1.3 is devoted to
a lightning review of AdS/CFT and its putative Minkowskian counterpart. Finally, in
Sect. 1.4 we describe the relation between BMS symmetry and soft graviton degrees
of freedom. Section1.5 contains a general presentation of the upcoming chapters and
describes their logical flow.

1.1 Asymptotic BMS Symmetry

The notion of symmetry is a cornerstone of physics and mathematics. A system
is symmetric if there exists a set of transformations that leave it invariant, i.e. that
preserve its structure. In physical terms, saying that a system has symmetries is
really saying that there exist certain transformations that can be performed without
affecting the outcome of experiments. For instance, translational symmetry is the
statement that the result of an experiment does not depend on where one carries it
out. By construction, the set of symmetry transformations of a system forms a group,
so the mathematical tool used in the study of symmetries is group theory.

In this thesis we shall be concerned with symmetries of gravitational systems,
that is, changes of coordinates that can be applied to space-time and that leave
invariant the large-distance behaviour of the gravitational field. They are known
as asymptotic symmetries and can be thought of as a generalization of Poincaré
symmetry for systems endowed with a weak gravitational field. In other words,
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2 1 Introduction

these symmetries are those one would observe by looking at a gravitational system
“from far away”. In that context, the general type of question that we will ask is the
following: given the asymptotic symmetries of a gravitational system, what are their
physical implications? In particular, how do these symmetries affect one’s intuition
about particle physics?

Asymptotic symmetries of gravitational systems have been studied for about 50
years by now. Their first appearance in the literature is also the one that motivates the
present work. Indeed, it was observed in the sixties by Bondi, van der Burg, Metzner
[1, 2] and Sachs [3, 4] that the presence of gravitation in an asymptotically flat space-
time leads to a symmetry group that is much, much larger than standard Poincaré.
The group that they found turned out to be an infinite-dimensional extension of the
Poincaré group, and is known today as the Bondi-Metzner-Sachs group, or BMS
group for short.

The BMS group considered by the authors of [2–4] consists of two pieces: the
first is the standard Lorentz group of special relativity, and the second is an infinite-
dimensional Abelian group of so-called supertranslations.1 In abstract mathematical
notation, its structure can be written symbolically as

BMS = Lorentz � Supertranslations. (1.1)

The notation � used here means that elements of the BMS group are pairs consisting
of a Lorentz transformation and a supertranslation, and that Lorentz transformations
act non-trivially on supertranslations. In the same way, the Poincaré group is

Poincare = Lorentz � Translations. (1.2)

The latter is a subgroup of BMS: the group of space-time translations is contained
in the infinite-dimensional group of supertranslations.

Groups of the form (1.1) or (1.2) are known as semi-direct products. They are
ubiquitous in physics, andmany of the conclusions of this thesis rely on this structure.

1.2 Global BMS and Extended BMS

In this sectionwe introduce Bondi coordinates to explain briefly howBMS symmetry
emerges from an asymptotic analysis. We then describe the distinction between
“global” and “extended” BMS transformations.

Bondi Coordinates

Consider Minkowski space-time, endowed with inertial coordinates xμ in terms of
which the metric reads

1The terminology of “super-things” here has nothing to do with supersymmetry: “super-object”
simply means that a certain object, which one is familiar with in the finite-dimensional context of
special relativity, gets extended in an infinite-dimensional way in the BMS group.



1.2 Global BMS and Extended BMS 3

Fig. 1.1 The coordinates u and r in space-time. The time coordinate x0 points upwards. The wavy
red line represents an outgoing radial massless particle emitted at r = 0 and moving to some non-
zero distance r away from the observer at r = 0; the particle moves along one of the generators of
the light cone given by u = const. The drawing is three-dimensional, so the circle of radius r in this
picture would actually be a sphere (spanned by the coordinate z) in a four-dimensional space-time

ds2 = ημνdx
μdxν, with (ημν) = diag(−1,+1,+1,+1). (1.3)

Now suppose we wish to study, say, outgoing massless particles sent by an observer
located at the spatial origin. For this purposewe introduce retardedBondi coordinates

r ≡ [
xi xi

]1/2
, z ≡ x1 + i x2

r + x3
, u ≡ x0 − r. (1.4)

Here r is a space-like radial coordinate, z is a stereographic coordinate on the sphere
of radius r (such that the north and south poles respectively correspond to z = 0
and z = ∞), and u is known as retarded time. In these coordinates the Minkowski
metric (1.3) reads

ds2 = −du2 − 2 dudr + r2
4dzdz̄

(1 + zz̄)2
(1.5)

and the world line of an outgoing massless particle (moving away from the origin)
is of the form u = const., z = const.:

In terms of Bondi coordinates, the region reached by massless particles emitted
at some moment from the origin r = 0 is a sphere at null infinity (r → +∞)
spanned by the complex coordinate z, called a (future) celestial sphere. There is one
such sphere for each value of retarded time u; the succession of all possible celestial
spheres is a manifold R × S2 located at r → +∞ and known as future null infinity.
It is the region where all outgoing massless radiation “escapes” out of space-time; it
is the upper null cone of the Penrose diagram of Minkowski space-time.
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Fig. 1.2 A representation of celestial spheres on the Penrose diagram of Minkowski space. As in
Fig. 1.1, the wavy red line represents an outgoing radial light ray. The drawing is three-dimensional,
so the red circle at the top of the picture would really be a sphere — a celestial sphere — in a four-
dimensional space-time. Future null infinity is the cone R × S2 on the upper half of the image,
spanned by u and z

There exists a parallel construction of Bondi coordinates which is convenient
for the study of past null infinity. These are advanced Bondi coordinates (r, z, v),
defined in terms of inertial coordinates xμ exactly as in (1.4) up to a sign difference
in retarded time: v = x0 + r . The spheres at r → +∞ then are past celestial spheres
and they foliate past null infinity (spanned by v and z) in slices of constant time. In
particular, all incoming massless particles originate from past null infinity (Fig. 1.2).

Asymptotic Flatness and the BMS Group

We now have the tools needed to introduce BMS symmetry. First, one declares that
a space-time manifold is asymptotically flat at, say, future null infinity, if it admits
local coordinates (r, z, u) such that, as r goes to infinity with u finite, the metric takes
the form (1.5) up to subleading corrections. These coordinates need not be defined
globally— all that is needed is that they span a neighbourhood of future null infinity.
Also, there is a precise definition of what is meant by “subleading corrections”; these
are alterations of the Minkowski metric (1.5) that typically decay as inverse powers
of r at infinity, but the allowed powers themselves are constrained in a specific way.
These constraints are motivated by physical considerations and they are part of the
definition of “asymptotic flatness”. (We will not deal with these subtleties for now,
but we shall display them in Sect. 9.1 in the three-dimensional case.)

The notion of asymptotic flatness allows one to define the associated asymp-
totic symmetry group. The latter consists, roughly speaking, of diffeomorphisms of

http://dx.doi.org/10.1007/978-3-319-61878-4_9


1.2 Global BMS and Extended BMS 5

space-time that preserve the asymptotic behaviour of the metric.2 Bondi et al. [2–4]
found that there are two families of such diffeomorphisms:

• The first family consists of Lorentz transformations. Their effect at null infinity is
that of conformal transformations of celestial spheres (i.e.Möbius transformations)
given in terms of the stereographic coordinate z of (1.4) by

z �→ az + b

cz + d
+ O(1/r),

(
a b
c d

)
∈ SL(2,C). (1.6)

This property relies on the isomorphism3 SO(3, 1)↑ ∼= SL(2,C)/Z2, which
expresses Lorentz transformations in terms of SL(2,C) matrices. Lorentz trans-
formations also act on the coordinates r and u at infinity by angle-dependent
rescalings, but this subtlety is unimportant at this stage.

• The second family consists of angle-dependent translations of retarded time,

u �→ u + α(z, z̄), (1.7)

whereα(z, z̄) is any (smooth) real functionon the sphere. In this language, Poincaré
space-time translations are reproduced by functions α which are linear combina-
tions of the functions

1 ,
1 − zz̄

1 + zz̄
,

z + z̄

1 + zz̄
,

i(z − z̄)

1 + zz̄
.

(In terms of polar coordinates θ and ϕ, this corresponds to the spherical harmonics
Y00(θ,ϕ) and Y1,m(θ,ϕ) withm = −1, 0, 1.) This is the main surprise discovered
by Bondi et al. It states that asymptotic symmetries (as opposed to isometries)
enhance the Poincaré group to an infinite-dimensional group with an infinite-
dimensional Abelian normal subgroup consisting of transformations (1.7). These
transformations are the supertranslations alluded to in Eq. (1.1).

Extended BMS

The group of asymptotic symmetry transformations (1.6) and (1.7) is the original
BMS group discovered in [2–4]. It consists of globally well-defined, invertible trans-
formations of null infinity, so from now on we call it the global BMS group. This
slight terminological alteration is rooted in one of themost intriguing aspects of BMS
symmetry. Indeed, in their work, Bondi et al. observed that asymptotic symmetries
include conformal transformations (1.6), but in principle onemay even include trans-
formations generated by arbitrary (generally singular) conformalKilling vector fields
on the celestial spheres. Only six of those vector fields generate the invertibleMöbius

2More precisely, the asymptotic symmetry group is the quotient of the group of diffeomorphisms
that preserve the asymptotic behaviour of the metric by its normal subgroup consisting of so-called
trivial diffeomorphisms. We will return to this in Sect. 8.1.
3O(3, 1) is the Lorentz group in four dimensions and SO(3, 1)↑ is its largest connected subgroup.

http://dx.doi.org/10.1007/978-3-319-61878-4_8
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transformations (1.6); the remaining ones are singular. Upon including these extra
generators, the global conformal transformations (1.6) are enhanced to arbitrary local
conformal transformations

z �→ f (z) + O(1/r), (1.8)

where f (z) is any meromorphic function. Despite their singularities, these trans-
formations do preserve the asymptotic behaviour of the metric and may therefore
qualify as asymptotic symmetries, at least infinitesimally.

The extension of the BMS group obtained by replacing Lorentz transformations
by local conformal transformations (1.8) is called the extended BMS group.4 In that
context, local conformal transformations of celestial spheres are known as super-
rotations and should be thought of as an infinite-dimensional extension of Lorentz
transformations, in the same way that supertranslations extend space-time transla-
tions. In the notation of (1.1) and (1.2), the extended BMS group looks like

Extended BMS = Superrotations � Supertranslations (1.9)

where now both factors of the semi-direct product are infinite-dimensional.
It was recently suggested by Barnich and Troessaert [5, 6] that extended (as

opposed to global) BMS symmetry is the true, physically relevant symmetry of
asymptotically flat gravitational systems in four dimensions (see also footnote 17 of
[7]). This proposal is motivated by a similar symmetry enhancement occurring in
two-dimensional conformally-invariant systems: while their global symmetry alge-
bra is finite-dimensional, they turn out to enjoy a much richer infinite-dimensional
symmetry. This observation first appeared in a seminal paper by Belavin, Polyakov
and Zamolodchikov [8] and triggered the development of two-dimensional confor-
mal field theory (CFT).

Thus, the truly thrilling aspect of extended BMS symmetry is the prospect of
applying conformal field-theoretic techniques to gravitational phenomena in four
dimensions. This reduction from four to two dimensions is reminiscent of holo-
grams, and indeed the notion of “holography” in quantum gravity is one of the main
motivations that led to these considerations.

1.3 Holography

The elementary concept of holography in quantum gravity is simple: it is the state-
ment that gravitational phenomena occurring in a certain space-time manifold can
be described equivalently in terms of some lower-dimensional, “dual” theory. This

4Strictly speaking, local conformal transformations do not span a group but a semi-group, and
the same applies to extended BMS. This abuse of terminology is pretty common, and it will be
inconsequential for the discussion of this introduction.
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idea is originally due to ’t Hooft [9] and Susskind [10], who were led to it by
model-independent considerations. In particular, holography is compatible with the
Bekenstein-Hawking entropy [11, 12] formula according to which the entropy of a
black hole is proportional to the area of its horizon. (The keyword here is “area”, as
opposed to the “volume” expected on the basis of standard thermodynamics.)

AdS/CFT

In practice, the first genuine illustration of holography in a concrete model of quan-
tum gravity — namely string theory — was exhibited by Maldacena [13], initi-
ating what has come to be known as the Anti-de Sitter/Conformal Field Theory
(AdS/CFT) correspondence. The latter states, in a nutshell, that (quantum) gravity
on a D-dimensional asymptotically Anti-de Sitter space-time is dual to a (D − 1)-
dimensional conformal field theory. The CFT may be seen as living on the boundary
of AdS, that is, at spatial infinity, and is supposed to capture all the information
on gravitational observables. This is a statement of duality, where two completely
different theories contain the same physical information. While there is (as yet) no
proof of the full equivalence, a substantial amount of checks have been carried out to
confirm that gravity on AdS and a suitable CFT on its boundary do indeed produce
the same physical predictions.

The case of a three-dimensional bulk space-time (D = 3) is especially important
for our purposes. In that context the first hint of a holographic duality actually dates
back to the eighties,whenBrown andHenneaux [14] noticed that the asymptotic sym-
metries of AdS3 gravity are infinite-dimensional. Analogously to the Minkowskian
setting studied two decades earlier by Bondi et al., Brown and Henneaux found
that asymptotic symmetries enhance the usual AdS3 isometry algebra so(2, 2) in
an infinite-dimensional way and span the algebra of local conformal transforma-
tions (1.8) in two dimensions. In addition, the conserved charges generating these
symmetries turn out to satisfy a centrally extended algebra, with a central charge
proportional to the AdS radius measured in Planck units, now known as the Brown-
Henneaux central charge. The latter is the one key parameter specifying the putative
two-dimensional CFT dual to gravity on AdS3. For instance, it was used in [15] to
show that the entropy of black holes in three dimensions [16, 17] can be reproduced
by a purely conformal field-theoretic computation.

The proposal that BMS symmetry might account for gravitational physics in
asymptotically flat space-times is similar in spirit to AdS/CFT. The problem is that
most known holographic constructions rely on the key assumption that the bulk
space-time is endowed with a negative cosmological constant, i.e. that it is of the
AdS type. This leads to a natural question: how should one deal with holography in
flat space?

Flat Space Holography

In the context of AdS/CFT, the dual theory of gravity is a CFT; in particular, even
without full knowledge of the dual theory, one can at least hope to make sense
of it by relying on the well understood consequences of conformal invariance. By
contrast, in asymptotically flat space-times, the concept of a “dual theory” is unclear,
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partly due to poorly understood symmetries and partly because (in dimension four or
higher) gravitational waves cross the null boundary of space-time; in fact, one may
ask whether flat space holography makes any sense to begin with. In view of this
pessimistic omen, a safe approach to the problem is to avoid unnecessary assumptions
and rely solely on the one known property of asymptotically flat gravity, namelyBMS
symmetry. Indeed, whatever flat space holographymeans, if a dual theory exists, then
it must be invariant under a certain version of BMS.

The most interesting incarnation of BMS symmetry is the four-dimensional one,
since it is relevant to macroscopic gravitational waves. Unfortunately, the structure
of the extended BMS (semi-)group in four dimensions is very poorly understood
(despite recent progress [18, 19]). In short, this structure appears to be such that
standard group theory fails to apply. One is thus led to study toy models that capture
the key features of BMS symmetry without the complications of a four-dimensional
world.

In this thesis we argue that the BMS group in three dimensions [20], or BMS3,
provides such a toymodel.We shall see that it displays the extended structure (1.9) in a
simplified and controlled setting, and successfully accounts formany aspects of three-
dimensional asymptotically flat gravity, both classically and quantum-mechanically.
The BMS3 group is the main actor of this work and we will use it to develop our
intuition on flat space holography in general, including the four-dimensional case.

Holography as an Erlangen Programme

Aside from the study of quantum gravity in asymptotically flat space-times, this
thesis puts a strong accent on the relation between group theory and physics. Most,
if not all, of the topics that we will encounter in both AdS3/CFT2 and flat space
holography follow from the properties of suitable groups — Virasoro and BMS3,
respectively. For instance, the phase space of gravity will turn out to coincide with
the space of the coadjoint representation of its asymptotic symmetry group, and its
quantization will produce families of unitary representations of that group. In this
sense, three-dimensional gravity and its “holographic” properties canbe reformulated
as statements in group theory.

In hindsight this observation is not too surprising. Indeed, Klein’s Erlangen pro-
gramme [21] posits that geometric statements can be recast in the language of group
theory. This point of viewhas led to numerous developments inmathematics through-
out the twentieth century (including e.g. the work of Poincaré on special relativity).
Since general relativity is essentially the dynamics of pseudo-Riemannian geometry,
it is natural that the programme should apply to it as well provided one identifies
the correct symmetry group. In particular, holography may sometimes be seen as an
Erlangen programme in disguise.5

5See e.g. the Wikipedia page https://en.wikipedia.org/wiki/Erlangen_program.

https://en.wikipedia.org/wiki/Erlangen_program
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1.4 BMS Particles and Soft Gravitons

The symmetry representation theorem ofWigner [22] states that the symmetry group
of any quantum-mechanical system acts on the corresponding Hilbert space by uni-
tary transformations. Accordingly, a natural first step in the study of BMS symmetry
is the construction and classification of its irreducible, unitary representations.

Since the Poincaré group is a subgroup of BMS, it provides a first rough picture
of what one should expect from BMS representations. Indeed, irreducible unitary
representations of Poincaré are, by definition, particles: they are classified by their
mass and spin [23] and their Hilbert space accounts for the available one-particle
states. The BMS group is expected to generalize this notion in away that incorporates
certain gravitational effects. It should describe the quantum states of a particle, plus
some extra degrees of freedomaccounting for the fact that BMS is only an asymptotic,
rather than an exact, symmetry group. Guided by this picture, we introduce the
following terminology:

A BMS particle is an irreducible, unitary representation of the BMS group.

This thesis is devoted to the description and classification of such particles in three
space-time dimensions.

Recent developments in the study of BMS symmetry provide a simple interpre-
tation for BMS particles. Indeed, it was observed in [19, 24] that, in four dimen-
sions, the statement of supertranslation-invariance of the gravitational S-matrix is
equivalent to Weinberg’s soft graviton theorem [25]. This result was subsequently
generalized to include superrotations [26, 27], producing a subleading term in the
soft graviton expansion of the S-matrix. The bottom line of these considerations is
that BMS symmetry describes the soft sector of gravity, that is, the one consisting
of infinite-wavelength gravitational degrees of freedom. The interpretation of BMS
particles follows: they are particles (in the standard sense) dressed with soft gravi-
tons. Dressed particles are indeed ubiquitous in the quantization of gauge theories
[28–36], and this in itself is not a new result. What is new, however, is the fact that
this dressing is accounted for by a symmetry principle that generalizes Poincaré; this
is the key content of the relation between BMS symmetry and soft theorems.

Accordingly, the classification of BMS particles that we expose in this thesis may
be thought of as a classification of all possible ways to dress a Poincaré particle with
soft gravitons. A word of caution is in order: since we will be working in three space-
time dimensions, the gravitational fieldwill have no local degrees of freedom so there
will be no genuine gravitons. In particular, the name “soft graviton” is ambiguous, as
there is no actual gravitonwhose zero-energy limit would be a soft particle. However,
asymptotic symmetries precisely account for soft graviton degrees of freedom, so we
shall adopt the viewpoint that any system with non-trivial asymptotic symmetries
does indeed have non-trivial soft degrees of freedom. This amounts to using the
words “soft graviton” as a synonym for themore standard “topological” or “boundary
degree of freedom”. In particular, three-dimensional gravitational systems generally
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do have highly non-trivial asymptotic symmetries [14, 37] and therefore possess
soft degrees of freedom in this sense. In this language, the statement that three-
dimensional gravity has no bulk degrees of freedom turns into the fact that the only
non-trivial degrees of freedom of three-dimensional gravity are soft.

Remark Unitary representations of the globally well-defined BMS group (1.1) have
already been classified by McCarthy and others in [38–40], and it was indeed sug-
gested in [41] that BMS symmetry is relevant to particle physics in that it provides a
better definition of the notion of “particle”. However, these representations appear to
miss the fact that supertranslations create soft gravitons when acting on the vacuum,
which is crucial for the application of BMS symmetry to soft theorems. In this sense
the understanding of BMS particles in four dimensions is still an open problem; it
suggests that some extension of (1.1) is necessary if representations of BMS are to
reflect reality. We shall comment further on this issue in Sect. 10.1.

1.5 Plan of the Thesis

We now describe the topics studied in this thesis. The latter is divided in three parts,
devoted respectively to group theory in quantum mechanics, to the Virasoro group,
and to the BMS3 group.

Quantum Symmetries

The first part of the thesis deals with the implementation of symmetries in quantum
mechanics through projective unitary representations, which are worked out in detail
for the Poincaré groups and the Bargmann groups. It consists of four chapters.

Quantum symmetries generally act in a projective way, which is to say that the
group operation of the underlying symmetry group is represented up to certain con-
stant phases. The presence of such phases is captured by central extensions of the
symmetry group. Accordingly, Chap. 2 is devoted to central extensions and to the
more general notion of group and Lie algebra cohomology. Chapter 3 then explains
howone can buildHilbert spaces ofwavefunctions on a homogeneous space endowed
with a unitary action of a symmetry group. This involves the important notion of
induced representations, which we discuss in detail.

As an application, in Chap.4we describe the irreducible unitary representations of
semi-direct products of the general form (1.1) or (1.2). As it turns out, all these repre-
sentations are induced representations and consist of wavefunctions on a momentum
orbit. This provides an exhaustive classification of unitary representations for such
groups. We illustrate these considerations with the Poincaré group (in any space-
time dimension) and with its non-relativistic counterpart, the Bargmann group, cor-
responding respectively to relativistic and Galilean particles.

Finally, Chap. 5 describes the relation between classical and quantum symmetries
through geometric quantization. In a nutshell this relation is obtained by defining a
space of wavefunctions on what is known as a coadjoint orbit of a symmetry group.

http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_5
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For semi-direct products this approach reproduces the classification of representa-
tions by momentum orbits and leads to a group-theoretic version of the world line
formalism.

Remark The tools used in Chaps. 2–4 rely on elementary group theory; we refer
for instance to [42] for an introduction. The language of Chap. 5, on the other hand,
relies more heavily on differential and symplectic geometry; see e.g. [43, 44] for
some background material.

Virasoro Symmetry and AdS3 gravity

The second part of the thesis dealswith theVirasoro group and its application to three-
dimensional gravity on Anti-de Sitter backgrounds. It consists of three chapters. The
material exposed in part II relies in a crucial way on Chap.2 and to a lesser extent
on Chap.5, but is independent of the considerations of Chaps. 3 and 4.

Chapter 6 is devoted to the construction of the Virasoro group as a central exten-
sion of the group of diffeomorphisms of the circle and introduces its coadjoint rep-
resentation. The latter coincides with the transformation law of stress tensors in
two-dimensional conformal field theory. In Chap.7 we classify the orbits of this
action, i.e. the coadjoint orbits of the Virasoro group, and observe that they look
roughly like infinite-dimensional cousins of Poincaré momentum orbits.

In Chap.8we showhowVirasoro symmetry emerges inAdS3 gravitywith Brown-
Henneaux boundary conditions, after explaining some basic notions on asymptotic
symmetries in general. We also show that the phase space of AdS3 gravity is embed-
ded as a hyperplane at constant central charge in the space of the coadjoint represen-
tation of two copies of theVirasoro group. As an applicationwe relate highest-weight
representations of the Virasoro algebra to the quantization of gravitational boundary
degrees of freedom.

BMS3 Symmetry and Gravity in Flat Space

The third and last part of the thesis is devoted to three-dimensional BMS symmetry
and contains most of the original contributions of this work. It consists of three
chapters, plus a conclusion. The material presented in part III relies crucially on the
content of parts I and II.

In Chap.9 we introduce BMS3 symmetry by way of an asymptotic analysis of
Brown-Henneaux type applied to Minkowskian backgrounds, and show that the
resulting algebra of surface charges has a classical central extension. We then put
this observation on firmmathematical ground by defining rigorously the BMS3 group
and its central extension. We also show that the phase space of asymptotically flat
gravity is a hyperplane at fixed central charges embedded in the space of the coadjoint
representation of BMS3 [45, 46].

Chapter 10 is devoted to the quantization of BMS3 symmetry, i.e. to its irreducible
unitary representations [47]. In the language introduced above, each representation is
aBMS3 particle.We show that the supermomentum orbits that classify these particles
coincidewith coadjoint orbits of theVirasoro group and describe the resultingHilbert
spaces of one-particle states. This leads in particular to the interpretation of BMS3
particles as particles dressed with gravitational degrees of freedom.

http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_7
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_10


12 1 Introduction

Finally, Chap. 11 deals with rotating one-loop partition functions of quantum
fields in flat space at finite temperature. Each partition function takes the form of
an exponential of Poincaré characters. In three space-time dimensions and for a
massless field with spin two, the combination of characters is precisely such that
the whole partition function coincides with the character of a unitary representation
of the BMS3 group [48, 49]. For higher spins in three dimensions we similarly
obtain characters of flat non-linear WN algebras [50]. Along the way we describe
unitary representations of these algebras [51] and show that they differ qualitatively
from earlier proposals in the literature.We end by describing certain supersymmetric
extensions of the BMS3 group, their representations, and their characters.

Remark The group-theoretic methods developed in this thesis apply to essentially
any symmetry group involving the Virasoro group. In particular one can use this
approach to derive the transformation laws of the stress tensor of a warped conformal
field theory for all values of its three central charges. Since these considerations are
somewhat out of our main line of thought we will not review them in this thesis and
refer instead to [52], where they were used to derive a Cardy-like formula for the
entropy of Rindler backgrounds.
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Part I
Quantum Symmetries

In this part, we describe symmetry groups in quantum mechanics along three related
lines of thought. First, we argue that the action of symmetry transformations in
quantum mechanics is unitary up to phases, which leads to central extensions. Then,
we show how to build concrete unitary representations using the method of induced
representations, which we apply to the description of relativistic particles. Finally,
we describe the general relation between unitary representations and homogeneous
spaces through geometric quantization.



Chapter 2
Quantum Mechanics and Central Extensions

In this short chapter we discuss the implementation of symmetries in a quantum-
mechanical context. For definiteness and simplicity we assume throughout that these
symmetries span a Lie group.We start in Sect. 2.1with a brief review of the symmetry
representation theorem of Wigner and show how quantum mechanics gives rise to
projective unitary representations. The problem of classifying such representations
then leads to Sects. 2.2 and 2.3, respectively devoted to Lie algebra cohomology and
group cohomology. The presentation is inspired by [1–4]; see also [5].

2.1 Symmetries and Projective Representations

In this section we review the interplay between quantum mechanics and symme-
tries. After a brief general reminder on the formalism of quantum theory, we state
the symmetry representation theorem which justifies the study of unitary representa-
tions of groups and Lie algebras. We also show how the fact that quantum states are
rays in a Hilbert space (rather than individual vectors) leads to projective represen-
tations, hence to central extensions. We end with a discussion of topological central
extensions, while algebraic central extensions are postponed to Sect. 2.2.

2.1.1 Quantum Mechanics

Definition A (complex) Hilbert space H is a vector space over C endowed with a
Hermitian form

〈·|·〉 : H × H → C : (�,�) �→ 〈�|�〉, (2.1)

© Springer International Publishing AG 2017
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such that the norm of a vector � be
√〈�|�〉, and such that the resulting normed

vector space be complete.1 We take the scalar product (2.1) to be linear in its second
argument and antilinear in the first one.

Note that our notation is not the standardDirac notation of bras and kets: a vector in
H is denoted as� (not |�〉), and its dual is the linear form 〈�|·〉 onH . Accordingly,
the Hermitian conjugate Â† of a linear operator Â is defined by

〈�| Â†�〉 ≡ 〈 Â�|�〉 for all �,� ∈ H . (2.2)

An operator Â is Hermitian (or self-adjoint)2 if Â† = Â.
Now consider a quantum system whose space of states is a Hilbert space H . A

pure quantum state of the system is a ray inH , that is, a one-dimensional subspace

[�] = {z�|z ∈ C} (2.3)

where � is some non-zero state vector. The vanishing vector does not represent
a quantum state, so the set of mutually inequivalent pure states is the projective
space PH = (H \0)/C. It is the set of one-dimensional subspaces of H . Stated
differently, the set of distinct states inH is the quotient of the unit sphere inH by
the equivalence relation

� ∼ eiθ� for all θ ∈ R. (2.4)

We shall denote by [�] the resulting equivalence class of �. For example, in a
two-level system where H = C

2, the set of inequivalent states is CP1 ∼= S2.
Now let the system be in a state [�]. If Â is an observable and if λ is one of its

eigenvalues with eigenvector � say, the probability of finding the value λ is

Prob(λ, Â, [�]) = |〈�|�〉|2
〈�|�〉〈�|�〉 . (2.5)

(We are assuming for simplicity that the eigenvalue λ is not degenerate.) Note that
this expression is independent, as it should, of the choice of both the representative
� of the state [�], and the eigenvector �.

Remark In quantum mechanics, one generally assumes that the Hilbert space is
separable, i.e. that it admits a countable basis. Any such space is isometric to the
space �2(N) of square-integrable sequences of complex numbers — so there really
exists only one infinite-dimensional separable Hilbert space. This is not to say that all
separable Hilbert spaces describe the same quantum system, because the definition
of a system also involves the set of observables that act on it — and identical Hilbert
spaces may well come with very different operator algebras.

1Recall that a metric space is complete if any Cauchy sequence converges.
2We will not take into account issues related to the domains of operators.
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2.1.2 Symmetry Representation Theorem

Symmetry Groups

A symmetry is a transformation of a system that leaves it invariant. In particular,
the set of symmetries of a system always contains the identity transformation, and
any symmetry transformation is invertible. In addition the composition of any two
symmetry transformations is itself a symmetry, and composition is associative. Put
together, these properties imply that

the set of symmetries of any system forms a group.

Accordingly, the framework suited for the study of symmetries is group theory.
In this thesis we will be concerned with Lie groups, consisting of symmetry

transformations that depend smoothly on a certain number of real parameters. This
number is the dimension of the group. In part I of the thesis, all Lie groups are
finite-dimensional.

Remark The notion of symmetry can be relaxed in such a way that not all pairs of
symmetry transformations are allowed to be composed together. The resulting set of
symmetry transformations then spans a groupoid rather than a group (see e.g. [6, 7]).
This relaxed notion of symmetry is relevant to gauge theories [8], and in particular
to BMS symmetry in four dimensions [9]. However, standard group theory suffices
for all symmetry considerations in three-dimensional gravity (and in particular for
BMS3), so we will not deal with groupoids in this thesis.

Symmetries in Quantum Mechanics

Consider a quantum Hilbert space of statesH . In these terms a symmetry is a bijec-
tion PH → PH : [�] �→ S([�]) that preserves the probabilities (2.5). Equiva-
lently, if we represent rays inH by normalized vectors subject to the identification
(2.4), a symmetry transformation S must be such that

|〈�|�〉| = ∣
∣〈�′|� ′〉∣∣ (2.6)

for all normalized vectors �, �, �′, � ′ such that �′ ∈ S([�]) and � ′ ∈ S([�]).
The key result on symmetries in quantum mechanics is the following [10]:

Symmetry Representation Theorem Let S : PH → PH be an invertible trans-
formation satisfying property (2.6). Then it takes the form S([�]) = [Û ·�], where
Û is either a linear, unitary operator so that

Û · (λ� + μ�) = λ Û · � + μ Û · � and 〈Û · �|Û · �〉 = 〈�|�〉 ,

or an antilinear, antiunitary operator so that

Û · (λ� + μ�) = λ̄ Û · � + μ̄ Û · � and 〈Û · �|Û · �〉 = 〈�|�〉
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for all λ,μ ∈ C and all �,� ∈ H . A proof of this theorem can be found in Chap.2
(Appendix A) of [1].

Note that symmetries represented by antiunitary operators only arise when the
symmetry group is disconnected. For example, in Lorentz-invariant theories, time-
reversal is always represented in an antiunitary way (see e.g. [11]). In this work
we will restrict attention to connected symmetry groups, in which case all symmetry
operators are linear andunitary. In particular they satisfy Û † = Û−1,whereHermitian
conjugation is defined by (2.2).

2.1.3 Projective Representations

The symmetry representation theorem implies that all (connected) symmetry groups
are represented unitarily in a quantum-mechanical system, and thus motivates the
study of unitary representations in general. Let us first recall the basics:

Definition A representation of a group G in a vector spaceH is a homomorphism3

T : G → GL(H ) : g �→ T [g]

where GL(H ) is the group of invertible linear transformations of H . When H is
a Hilbert space, the representation is unitary if T [g] is a unitary operator for each
g ∈ G.

In quantum mechanics the notion of symmetry as a transformation that satisfies
(2.6) leads to a key subtlety. Let us call T [ f ] the unitary operator that represents a
symmetry transformation f belonging to some group G. Then, because a quantum
state is really an equivalence class (2.3) of vectors inH , there is no need to require
T to be a homomorphism; rather, all we need is that the ray of T [ f ] · T [g] · �

coincides with that of T [ f · g] · � (for all f, g ∈ G and any � ∈ H ). Accordingly,
T must really be a unitary representation up to a phase,

T [ f ] · T [g] = eiC( f,g) T [ f · g] for f, g ∈ G, (2.7)

where C is some real function on G × G. In more abstract terms, T must define a
group action on the projective space PH , which is to say that the map

[T ] : G → GL(H )/C∗ : f �→ [

T [ f ]] (2.8)

is a homomorphism. Here GL(H )/C∗ is the projective group ofH , i.e. the quotient
of the linear groupofH by its normal subgroup consistingofmultiples of the identity.
For any operator O in GL(H ), the symbol [O] denotes its class in the projective
group. Throughout this thesis, any map T satisfying this property will be called

3Throughout this thesis representations of groups are denoted by the lettersR, S, T , etc. The letter
G denotes a group whose elements are written f , g, h, etc. The identity in G is denoted e.

http://dx.doi.org/10.1007/978-3-319-61878-4_2
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a projective representation. In quantum mechanics, symmetries are represented by
unitary projective representations, i.e. projective representations whose operators are
unitary.

From now on, if we wish to stress that a representation is not projective, we will
call it exact. Quantummechanics tells us that exact representations are overrated: the
truly important ones are generally projective. This seemingly anecdotal observation
is at the core of the richest aspects of the representation theory of theVirasoro algebra,
and it will also play a key role for BMS3 particles. For instance, all interesting two-
dimensional conformal field theories are such that the conformal group is represented
projectively in their Hilbert space, and how exactly this phenomenon takes place is
measured by the central charge. For this reason, this whole chapter is devoted to the
various ways in which projective effects occur; they are accounted for by group and
Lie algebra cohomology.

Remark Since we are focussing on Lie groups, the representations of interest are
continuous in the sense that the map G × H → H : ( f, �) �→ T [ f ] · � is
continuous. From now on it is understood that all representations are continuous.

2.1.4 Central Extensions

The function C appearing in (2.7) is not completely arbitrary. Indeed, the product
(2.7)must be associative in the sense thatT [ f ]·(T [g] · T [h]) = (T [ f ] · T [g])·T [h]
for all group elements f, g, h, so that

C( f, gh) + C(g, h) = C( f g, h) + C( f, g) for all f, g, h ∈ G. (2.9)

Any function C : G × G → R satisfying this requirement is known as a (real)
two-cocycle, and the condition itself is known as the cocycle condition. Given any
such function one can define a new group

Ĝ ≡ G × R (2.10)

whose elements are pairs ( f,λ), endowed with a group operation

( f,λ) · (g,μ) = (

f · g,λ + μ + C( f, g)
)

. (2.11)

The group (2.10) is called a central extension of the group G. We will study this
notion in much greater detail in Sect. 2.3. For now let us only work out the basic
consequences of this structure and its relation to representation theory.

Projective Versus Exact Representations

Property (2.7) says that T is an exact unitary representation of the centrally extended
group (2.10), providedone represents the pair ( f,λ)by eiλT [ f ]. In otherwords, exact
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representations are not overrated after all: wemay view any projective representation
of G as an exact (i.e. non-projective) representation of a central extension Ĝ of G,
and the problem of classifying projective unitary representations of G boils down to
that of classifying exact unitary representations of its central extensions.

The question then is whether G admits central extensions to begin with. For any
group, an obvious type of central extension always exists. Namely, suppose K is a
real function on G and define C : G × G → R by

C( f, g) ≡ K( f g) − K( f ) − K(g). (2.12)

This automatically satisfies condition (2.9). A two-cocycle of that form is said to be
trivial. In particular, if the cocycle in (2.7) is trivial, it can be absorbed by defining
T̃ [ f ] ≡ eiK( f )T [ f ], which is an exact representation of G. Thus, what we wish
to know is not quite whether G admits two-cocycles at all (since trivial ones are
always available), but rather whether it admits non-trivial two-cocycles. If yes, it
admits genuine projective representations, whose phases cannot be absorbed by a
mere redefinition.

This question leads to group (and Lie algebra) cohomology, studied in detail in
Sects. 2.2 and 2.3. For now we simply point out that central extensions may arise via
two distinct mechanisms. The first is algebraic in that it follows from the local group
structure of G, or equivalently from the commutation relations of its Lie algebra. In
short, in some cases, the Lie algebra g of G can be enlarged into a bigger algebra ĝ
which contains extra generators commuting with those of g (see Eq. (2.27) below).
The group corresponding to this enlarged algebra then is a central extension of G.
The second mechanism is topological in the sense that it is due to the global structure
of G. We now describe this topological mechanism in some more detail.

2.1.5 Topological Central Extensions

If the group G is not simply connected (i.e. its fundamental group is non-trivial),
there exist closed paths in G that cannot be continuously deformed into a point.
Let γ : [0, 1] → G be such a path, starting and ending at some group element f
so that γ(0) = γ(1) = f . Suppose we are given a (continuous) projective unitary
representation T of G, and consider the path

T ◦ γ : [0, 1] → GL(H ) : t �→ T [γ(t)]

in the space of unitary operators on H . Since T is projective, the fact that γ is a
closed path does not imply that T ◦ γ is closed: in general T [γ(0)] and T [γ(1)]
differ by a γ-dependent phase, T [γ(1)] = eiφ(γ)T [γ(0)].

Owing to the fact that the map T is continuous, the phase φ(γ) only depends
on the homotopy class of γ. In addition, if γ1 and γ2 are two closed paths starting
at f , we can concatenate them into a single path γ1 · γ2 (which is γ1 at double
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speed followed by γ2 at double speed); the phase φ must be compatible with this
operation in the sense that eiφ(γ1) · eiφ(γ2) = eiφ(γ1·γ2). Thus, any one-dimensional
unitary representation of the fundamental group of G, multiplying an exact unitary
representation of G, produces a projective unitary representation of G.

This is the topological notion of central extensions that we wanted to exhibit: if
G is multiply connected, it admits genuine projective representations (whose phases
cannot be removed by redefinitions) due to one-dimensional unitary representations
of its fundamental group.4 Projective representations of that type may equivalently
be seen as exact representations of the universal cover G̃ of G, which is the unique
connected and simply connected group locally isomorphic to G.

Remark One might be worried by the fact that only one-dimensional unitary rep-
resentations of the fundamental group are allowed to appear in this construction.
Indeed, if the fundamental group was non-Abelian, it would generally admit no
non-trivial one-dimensional unitary representation. Fortunately, it turns out that the
fundamental group of any finite-dimensional Lie group is a discrete commutative
group, whose irreducible unitary representations are necessarily one-dimensional.

Rotations and Anyons

The simplest example of topological projective representations arises with the group
U(1). The latter is diffeomorphic to a circle and has a fundamental group isomorphic
to Z (see Fig. 2.1). Any exact irreducible, unitary representation of U(1) takes the
form

T : U(1) → C
∗ : θ �→ eisθ (2.13)

where θ is identified with θ + 2π, as a consequence of which the “spin” s is an
integer. For example, when s = 2, a rotation by θ = π is represented by the identity.
(We will see in Sect. 4.3 that the label s actually is the spin of a particle in certain
representations of the Poincaré groups.) But there is a subtlety: U(1) is multiply con-
nected and admits topological projective representations, which from the viewpoint
of quantum mechanics are just as acceptable as exact ones. For example, the map
(2.13) with s = 1/2 definitely isn’t an exact representation because a full rotation
by 2π is now represented by an inversion, T [2π] = eiπ = −1. Nevertheless, in
quantum mechanics, the vectors � and T [2π] · � define the same state by virtue of
the identification (2.4), so in this sense T [2π] acts as an “almost-identity” operator.
More generally, formula (2.13) is a projective representation of U(1) for any real
value of the spin s.

The example just described occurs in Nature. Indeed, fermions provide a well-
known example of projective representations, as already suggested above by the
case s = 1/2. By the spin-statistics theorem, all fermions have half-integer spins,
and therefore transform according to a projective representation of the Lorentz group.
The latter is multiply connected (its fundamental group isZ2), which is why it admits
projective representations in the first place.Wewill return to the representation theory

4Beware: a manifold being multiply connected means that it has a non-trivial fundamental group,
and not that it has several connected components.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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Fig. 2.1 The group U(1) is diffeomorphic to a circle S1, whose universal cover is the real line
R. The projection R → S1 ∼= R/Z is obtained by identifying points of R that differ by some
periodicity, typically θ ∼ θ + 2π. In particular, paths in R which are not closed may be projected
on closed paths in S1. As an application we can picture topological projective representations: if T
is projective and if γ is a closed path in the circle, the sequence T [γ(t)] may not be a closed path
in the space of operators

of the Lorentz group (as a subgroup of Poincaré) in much greater detail in Sect. 4.2.
In the cases where arbitrary real values of spin are allowed by quantum mechanics,
as for example in three space-time dimensions, the particles whose spin is neither an
integer nor a half-integer are known as anyons. We will encounter this phenomenon
in Sect. 10.1 when dealing with BMS3 particles.

2.1.6 Classifying Projective Representations

Given a group G, suppose we wish to find all its projective unitary representations.
The above considerations provide an algorithm that allows us, in principle, to solve
that problem:

• First find the universal cover G̃ of G to take care of topological central extensions.
• Then find the most general central extension ̂̃G of G̃ in order to take care of
differentiable central extensions. (We will deal with the actual definition of these
extensions in the next section.)

• Finally, consider an exact unitary representation of ̂̃G; any projective unitary rep-
resentation of G may be seen as a representation of that type.

Thus we now have a systematic procedure allowing us to build arbitrary projective
unitary representations of symmetry groups in quantum mechanics. We will apply
it later to the Virasoro algebra (Sect. 8.4) and the BMS3 group (Sect. 10.1), where
central extensions play a crucial role.

2.2 Lie Algebra Cohomology

This section is devoted to a thorough investigation of the concept of central extensions
at theLie-algebraic level. In fact, we shall describe themore general framework of Lie
algebra cohomology andwewill showhowstatements on algebraic central extensions

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_10
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can be recast in that language. The group-theoretic analogue of this construction is
relegated to Sect. 2.3.

2.2.1 Cohomology

Let g be a Lie algebra with Lie bracket [·, ·]. We recall that a representation of g in a
vector space V is a linear map T : g → End(V) such that T [X ] ◦T [Y ] −T [Y ] ◦
T [X ] = T

[[X,Y ]] for all Lie algebra elements X,Y .5

Definition Let k be a non-negative integer, T a representation of g in V. Then
a V-valued k-cochain on g is a continuous, multilinear, completely antisymmetric
map6

c : g × · · · × g
︸ ︷︷ ︸

k times

→ V : (X1, ..., Xk) �→ c(X1, ..., Xk). (2.14)

In other words, a V-valued k-cochain on g is a k-form on g with values in V; note
that 0 ≤ k ≤ dim(g). A zero-cochain on g is a vector inVwhile a dim(g)-cochain is a
volume form on g. We denote the space ofV-valued k-cochains on g by Ck(g,V) and
we define the associated cochain complex C∗(g,V) ≡ ⊕dim(g)

k=0 Ck(g,V). The latter is
sometimes called the Chevalley-Eilenberg complex.

Definition The Chevalley-Eilenberg differential d : C∗(g,V) → C∗(g,V) is defined
by dim(g) linear maps

dk : Ck(g,V) → Ck+1(g,V) : c �→ dkc

where k runs from 0 to dim(g) − 1 and the (k + 1)-cochain dkc is given by

(dkc)(X1, ..., Xk+1) ≡
∑

1≤i< j≤k+1

(−1)i+ j−1c
([Xi , X j ], X1, ..., X̂1, ..., X̂ j , ..., Xk+1

)

+
∑

1≤i≤k+1

(−1)iT [Xi ] · c(X1, ..., X̂i , ..., Xk+1
)

(2.15)

for all X1, ..., Xk+1 in g; the hat denotes omission. Note that the representationT of
g in V appears explicitly in this definition. In particular, when T is trivial, formula
(2.15) simplifies since its last line disappears.

Cocycles and Coboundaries

Using the fact thatT is a representation, one can verify that the Chevalley-Eilenberg
differential (2.15) is nilpotent:

5Throughout this thesis the elements of a Lie algebra gwill be denoted as X , Y , etc. Representations
of Lie algebras will be denoted by script capital letters such as R, S , T .
6Cochains on Lie algebras will be denoted by lowercase sans serif letters such as c, s, etc.
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dk ◦ dk−1 = 0 ∀ k = 0, ..., dim(g) (2.16)

where it is understood that the “extreme differentials” are d−1 : 0 → V : 0 �→ 0 and
ddimg : Cdimg(g,V) → 0 : c �→ 0.Accordingly, one adapts the standard terminology
of differential forms to cochains on a Lie algebra: a k-cocycle is a k-cochain c such
that dkc = 0; a k-coboundary is a k-cochain c of the form c = dk−1b, where b is
some (k−1)-cochain. By virtue of property (2.16), one has Im(dk−1) ⊆ Ker(dk) for
each k (any coboundary is a cocycle). One can therefore define the kth cohomology
space of g with coefficients in V as the quotient of the space of k-cocycles by the
space of k-coboundaries:

Hk(g,V) ≡ Ker(dk)/Im(dk−1). (2.17)

A k-cocycle is said to be trivial if its equivalence class vanishes in Hk , i.e. if the
cocycle is a coboundary; the cocycle is non-trivial otherwise. When V = R with T
the trivial representation of g, we writeHk(g,R) ≡ Hk(g).

Isomorphic Lie algebras have the same cohomology for any choice of the repre-
sentation T . Thus, cohomology is a way to associate invariants with Lie algebras:
if two algebras have different cohomology spaces, then they cannot be isomorphic.
This is analogous to, say, deRhamcohomology in differential geometry, asmanifolds
with different de Rham cohomologies cannot be diffeomorphic.

Low Degree Cohomologies

There is a simple interpretation for the lowest cohomology spaces. For example,
zero-cocycles are vectors v ∈ V that are invariant under g in the sense that

T [X ] · v = 0 for all X ∈ g , (2.18)

so the zeroth cohomology space of g classifies the invariants of the representationT .
Similarly, one-cocycles are known as derivations of g and are classified by the first
cohomology spaceH1(g,V). In the particular case where T is trivial and V = R, a
one-cocycle is a linear map c : g → R such that c([X,Y ]) = 0 for all Lie algebra
elements X,Y . Hence the first real cohomology space of g can be written as

H1(g) ∼= g/[g, g] , (2.19)

which motivates the following definition:

Definition A Lie algebra g is perfect if g = [g, g], i.e. if any Lie algebra element can
be written as the bracket of two other elements.

It follows from (2.19) that g is perfect if and only ifH1(g) vanishes. We will use
this property in Sect. 2.2.2 when defining central extensions.

By the definitions above, a two-cochain is an antisymmetric map c : g× g → V.
It is a coboundary if
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c(X,Y )
(2.15)= (d1k)(X,Y ) = k([X,Y ]) − T [X ] · k(Y ) + T [Y ] · k(X) (2.20)

for some one-cochain k; and it is a cocycle if

c([X, Y ], Z) + c([Y, Z ], X) + c([Z , X ],Y ) =
= T [X ] · c(Y, Z) + T [Y ] · c(Z , X) + T [Z ] · c(X,Y ).

(2.21)

Aswe shall see shortly, whenT is trivial, a two-cocycle defines a central extension of
g. Thus the second cohomology of g classifies its extensions. More generally, coho-
mology may be seen as a measure of flexibility: Lie algebras with high-dimensional
cohomology groups can be “deformed” in many inequivalent ways; by contrast, Lie
algebras with trivial cohomology are “rigid” in the sense that any deformation is
equivalent to no deformation at all.

Remark Here we have been using the word “deformation” in a vague way, but there
is an exact definition of the notion of deformations. Namely, a (true) deformation of
a Lie algebra g is a Lie algebra g̃ that coincides with g as a vector space, but whose
brackets are

[̃X,Y ]̃ = [X,Y ] + c(X,Y ) (2.22)

where [·, ·] is the bracket in g while c is a g-valued two-cocycle on g,7 such that the
image of c belongs to its kernel. The latter condition means that c

(

X, c(Y, Z)
) = 0

for all Lie algebra elements X,Y, Z ; together with the fact that c is a cocycle, this
ensures that (2.22) is a Lie bracket.

Examples

For finite-dimensional semi-simple Lie algebras, cohomology is trivial:

Whitehead’s Lemma Let g be a finite-dimensional semi-simple Lie algebra, T an
irreducible, finite-dimensional representation of g in a space V. Then

Hk(g,V) = 0 for all k > 0. (2.23)

Despite this result, examples of non-trivial cohomologies do exist in physics. For
instance, let c be an arbitrary non-vanishing antisymmetric bilinear form on R2, and
view the latter as an Abelian Lie algebra. Then c defines a non-trivial, real-valued
two-cocycle on R

2, so the real-valued second cohomology of R2 is non-trivial; in
fact one can prove that

H2(R2) ∼= R. (2.24)

We shall see below that this property is related to the (three-dimensional) Heisen-
berg algebra, which is crucial for quantum mechanics. Other important examples of
algebras with non-trivial cohomology spaces include the Galilei algebra (Sect. 4.4),
the Virasoro algebra (Chap.6) and the bms3 algebra (Chap. 9).

7It is understood that the relevant representation of g in this case is the adjoint, T [X ] ·Y ≡ [X, Y ].

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_9
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2.2.2 Central Extensions

Definition Let g be a (real) Lie algebra and let c ∈ C2(g,R) be a real two-cocycle on
g. Then c defines a central extension ĝ of g, which is a Lie algebra whose underlying
vector space

ĝ = g ⊕ R (as vector spaces) (2.25)

is endowed with the centrally extended Lie bracket

[

(X,λ), (Y,μ)
] ≡ ([X,Y ], c(X,Y )

)

. (2.26)

In particular, elements of ĝ are pairs (X,λ) where X ∈ g and λ ∈ R, so that R is an
Abelian subalgebra of ĝ. The bracket (2.26) satisfies the Jacobi identity on account
of the fact that c is a two-cocycle with respect to a trivial representation of g (so that
the right-hand side of Eq. (2.21) vanishes).

In (2.26) we displayed the definition of central extensions in intrinsic terms thanks
to the two-cocycle c. The same definition can be written in terms of Lie algebra
generators: let {ta|a = 1, ..., n} be a basis of gwith brackets [ta, tb] = fab

c tc. Then a
central extension ĝ of g is a Lie algebra generated by the basis elements Ta ≡ (ta, 0)
together with a central element Z = (0, 1), whose Lie brackets read

[Ta, Tb] = fab
c Tc + cab Z (2.27)

where cab = c(ta, tb), while all brackets with Z vanish. The cocycle condition on c
then becomes the requirement

fab
dcdc + fbc

dcda + fca
dcdb = 0

for the coefficients cab. Note that this construction can be readily generalized to
multiple central extensions ĝ = g⊕R

N , in which case there are N central generators
Z1, ...,ZN .

Non-Trivial Central Extensions

When the two-cocycle c is trivial in the sense of Lie algebra cohomology, it takes
the form (2.20) in terms of some one-cocycle k and the map

g → ĝ : X �→ (

X, k(X)
)

(2.28)

is an injective homomorphism of Lie algebras. The central extension is then said
to be trivial: the cocycle c can be absorbed by the “redefinition” (2.28), and ĝ is
isomorphic to the direct sum g ⊕ R as a Lie algebra. By contrast, when c is non-
trivial, it defines a non-zero element in the second cohomology spaceH2(g); such a
two-cocycle cannot be removed by a mere redefinition, and the central extension is
non-trivial.
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For example, as on p.xx, consider the Abelian Lie algebra R
2 and let c be a

non-zero antisymmetric bilinear form on R
2. We then define the three-dimensional

Heisenberg algebra as the algebra R3 = R
2 ⊕ R whose elements are pairs (X,λ),

endowedwith the Lie bracket (2.26). Since c is non-trivial, so is the central extension.
If we choose a basis {Q, P} ofR2 such that c(Q, P) = 1 and if we call Z the central
element (0, 1), the commutation relations of the Heisenberg algebra take the form

[Q, P] = Z . (2.29)

Property (2.24) says that there is only one linearly independent central extension of
R

2, i.e. that Heisenberg algebras built using different (non-zero) two-cocycles c are
mutually isomorphic. This can be generalized to higher dimensions: by seeing R

2n

as an Abelian Lie algebra and taking c an arbitrary non-zero 2n-form on R
2n , the

Lie algebra defined by the bracket (2.26) is the (2n + 1)-dimensional Heisenberg
algebra.

Universal Central Extensions

It is important to know how many inequivalent central extensions an algebra may
possess. This leads to the following notion:

Definition A central extension ĝ of g is universal if, for any other central extension
ĝ′ of g, there exists a unique isomorphism of Lie algebras ĝ′ ∼= ĝ.

As it turns out, any perfect Lie algebra admits a universal central extension. By
virtue of (2.19), this is to say that any algebra such thatH1(g) = 0 admits a universal
central extension. For example we will see in Chap. 6 that the Virasoro algebra is the
universal central extension of the Lie algebra of vector fields on the circle.

2.3 Group Cohomology

This section is devoted to the group-theoretic analogue of the considerations of the
previous pages. We start by discussing generalities on group cohomology before
focussing on central extensions of groups.

2.3.1 Cohomology

Let G be a Lie group, T : G → GL(V) a representation of G in a vector space V.

Definition Let k ≥ 0 be an integer. A V-valued k-cochain on G is a smooth map8

8Cochains on a group will be denoted by capital sans serif symbols such as C, S, etc.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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C : G × · · · × G
︸ ︷︷ ︸

k times

→ V : (g1, ..., gk) �→ C(g1, ..., gk). (2.30)

Note that, in contrast to the Lie-algebraic definition (2.14), there is no restriction
on k. The new ingredient in the group-theoretic context is the requirement that the
map (2.30) be smooth. As in the case of Lie algebras, we denote by Ck(G,V) the
vector space of V-valued k-cochains on G and we let C∗(G,V) = ⊕+∞

k=0Ck(G,V) be
the associated cochain complex. The space of zero-cochains is just V.

Definition The differential d : C∗(G,V) → C∗(G,V) is defined by the maps

dk : Ck(G,V) → Ck+1(G,V) : C �→ dkC

where k ∈ N and the (k + 1)-cochain dkC is given by

(dkC)(g1, ..., gk+1) ≡ T [g1] · C(g2, ..., gk+1) + (−1)k+1 C(g1, ..., gk)

+
k

∑

i=1

(−1)i C(g1, ..., gigi+1, ..., gk+1)
(2.31)

for all g1, ..., gk+1 in G.
The differential (2.31) satisfies the key property (2.16), so the usual machinery

of homological algebra applies: one defines a k-cocycle as a closed k-cochain, that
is, a cochain C such that dkC = 0. One also defines a k-coboundary to be an exact
k-cochain, i.e. one that can be written as the differential of a (k − 1)-cochain. As
before any coboundary is trivially a cocycle, so one defines the kth cohomology
space of G with values in V as the quotient of the space of k-cocycles by the space
of k-coboundaries:

Hk(G,V) ≡ Ker(dk)/Im(dk−1).

A k-cocycle is trivial if its class in Hk(G,V) vanishes; it is non-trivial otherwise.
When V = R with T the trivial representation, we writeHk(G,R) ≡ Hk(G).

Interpretation

As in the case of Lie algebras, cohomology spaces are invariants that measure the
flexibility of a group structure; isomorphic Lie groups have the same cohomology.
This interpretation is simplest to illustrate with the cohomology spaces of lowest
degree.

A V-valued zero-cocycle on G is a vector v ∈ V such that (d0v)( f ) = T [ f ] ·
v − v = 0 for any group element f . Accordingly, the zeroth cohomology space of
G classifies vectors v ∈ V that are left invariant by G. This is the group-theoretic
analogue of (2.18).

A V-valued one-cocycle is a (smooth) map S : G → V satisfying the property

S( f g) = T [ f ] · S(g) + S( f ) ∀ f, g ∈ G. (2.32)
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Given a one-cocycle S, one defines the associated affine module as the space V⊕R

acted upon by the following representation T̂ of G:

T̂ [ f ] · (v,λ) ≡ (

T [ f ] · v + λS( f ),λ
)

. (2.33)

The cocycle condition (2.32) ensures that T̂ is indeed a representation. In addition
one can show that affine modules defined using different one-cocycles are equivalent
if (and only if) their cocycles differ by a coboundary. ThusH1(G,V) classifies affine
G-modules based on V. For example, in Sect. 6.3 we will see that the Schwarzian
derivative is a one-cocycle on the group of diffeomorphisms of the circle; this is why
we denote the cocycle in (2.33) by S. The corresponding affine module will be the
coadjoint representation of the Virasoro group and the parameter λ left invariant by
(2.33) will be a Virasoro central charge. More generally one can think of the term
λS[ f ] in (2.33) as an anomaly that adds an inhomogeneous term to the otherwise
homogeneous transformation law of v under G.

Two-cocycles lead to the notion of group extensions; in particular, when V = R

with T the trivial representation, H2(G) classifies central extensions of G. Indeed,
when C is a real two-cocycle on G, the requirement d2C = 0 becomes the cocycle
condition (2.9); the central extension is trivial whenC is a coboundary, i.e. if it takes
the form (2.12) for some one-cochain K. We will return to central extensions of
groups in Sect. 2.3.2.

Relation to Lie Algebra Cohomology

One may ask how group and Lie algebra cohomology are related. The following
result provides a first answer:

Proposition Let G be a Lie group, g its Lie algebra. Let V be a vector space, T a
smooth representation of G in V, and T the representation of g corresponding to T
by differentiation. Then, for any non-negative integer k, there is a homomorphism

Hk(G,V) → Hk(g,V) : [C] �→ [

δC
]

(2.34)

given by

δC(X1, ..., Xk) ≡ ∂k

∂t1...∂tk

⎡

⎣
∑

1≤i1<...<ik≤k

εi1...ikC
(

eti1 Xi1 , ..., etik Xik
)

⎤

⎦

∣
∣
∣
∣
∣
∣
t1=0,...,tk=0

for all X1, ..., Xk in g, with eX the exponential of X ∈ g and εi1...ik the Levi-Civita
symbol with k indices (and ε12...k ≡ +1). For k = 2 this can be rewritten as

δC(X, Y ) = ∂2

∂t ∂s

[

C
(

et X , esY
) − C

(

esY , et X
) ]∣

∣
∣
t=0, s=0

. (2.35)

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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The fact that (2.34) is a homomorphism ensures that, if δC is a non-trivial cocycle,
thenC itself is non-trivial. The converse is not true since themapneed not be injective:
a non-trivial cocycle C may well be such that δC is trivial.

Wewill use formula (2.35) in Sect. 6.2 to relate theVirasoro algebra to theVirasoro
group. The key point here is that any differentiable group cocycle C admits an
algebraic analogue δC. The converse problem is to start from a Lie algebra cocycle,
say c, and ask whether there exists a group cocycle whose differential is c. This is
the problem of integrating Lie algebra cocycles to group cocycles, and it is generally
much more complicated than differentiation. However, for “sufficiently connected”
Lie groups, the Van Est theorem states that integration is trivial because group and
Lie algebra cohomologies coincide (see e.g. [4]). In particular, when the universal
cover of a group is homotopic to a point, the cohomology of the universal cover
coincides with that of the Lie algebra.

2.3.2 Central Extensions

Here we return in more detail to the notion of centrally extended groups, already
outlined around (2.11). For simplicity we deal only with simply connected groups,
so as to avoid the topological complications of Sect. 2.1.5. Including these subtleties
would lead to a definition of central extensions somewhat more general (see e.g. [4])
than the one given here:

Definition Let G be a Lie group, C a real two-cocycle on G. Then the associated
centrally extended group Ĝ is topologically a product G × R whose elements are
pairs ( f,λ) with f ∈ G and λ ∈ R, endowed with a group operation (2.11).

It is straightforward to generalize this definition to the case where R is replaced
by an arbitrary (additive) Abelian group such as RN .

Non-Trivial Central Extensions

As in the Lie-algebraic case, a central extension of G is trivial if the two-cocycle C
defining the group operation (2.11) is a coboundary (2.12) for some one-cochain K.
Then the map G → Ĝ : f �→ (

f,K( f )
)

is an injective homomorphism whose Lie-
algebraic analogue is (2.28), and Ĝ is isomorphic, as a group, to the direct product
G × R. Thus any trivial central extension can be absorbed by a redefinition of the
group, and is irrelevant as regards projective representations. By contrast, when the
cohomology class of C is a non-zero vector in H2(G), the central extension cannot
be removed by a redefinition and is said to be non-trivial.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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ExampleLet us find the group corresponding to the (2n+1)-dimensionalHeisenberg
algebra. Consider the Abelian additive group G = R

n × R
n (whose elements are

pairs of column vectors (α,β)) and define the Heisenberg group as

Ĝ ≡
⎧

⎨

⎩

⎛

⎝

1 αt λ
0 In β
0 0 1

⎞

⎠

∣
∣
∣
∣
∣
∣

α,β ∈ R
n, λ ∈ R

⎫

⎬

⎭
(2.36)

where In denotes the n × n identity matrix and αt is the transpose of α. The group
operation in Ĝ is given by matrix multiplication and can be written as

(α,β,λ) · (α′,β′,λ′) = (

α + α′,β + β′,λ + λ′ + αt · β′) (2.37)

whereαt ·β′ ≡ αiβ′i is the Euclidean scalar product ofα andβ′. Thus theHeisenberg
group is a central extension of R2n defined by the two-cocycle

C
(

(α,β), (α′,β′)
) = αt · β′. (2.38)

By differentiation, one can associate with C a Lie algebra cocycle given by (2.35).
For example, when n = 1 (and writing elements of the Lie algebra R

2 as pairs
X = (x, y)),

δC
(

(x, y), (x ′, y′)
) (2.35)= ∂2

∂t ∂s

(

t x · sy′ − sx ′ · t y)∣∣t=0, s=0 = xy′ − yx ′.

This is a non-zero antisymmetric bilinear form onR2, hence defining the Heisenberg
algebra of (2.29). Note that this is an example of “cocycle integration”: we have
found the explicit group two-cocycle whose differential defines the Heisenberg Lie
algebra.

Universal Central Extensions

Universal central extensions of groups can be defined exactly as for Lie algebras. A
central extension Ĝ of G is universal if, for any other central extension Ĝ ′ of G by
A, there exists a unique isomorphism Ĝ → Ĝ ′.

As in the algebraic case, there is a simple criterion for knowing when a group
admits a universal central extension. A group is said to be perfect if it coincides with
the group of its commutators, i.e. if any f ∈ G can be written as f = ghg−1h−1

for some g, h ∈ G. It turns out that any perfect group admits a universal central
extension. In Chaps. 6 and 9 we will see that both Diff(S1) and BMS3 are perfect
groups, so that their central extensions are universal.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_9
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Chapter 3
Induced Representations

In the previous chapter we learned how to deal with projective representations: given
a symmetry group,we are to find its universal cover and itsmost general central exten-
sion. Exact representations of this central extension then account for all projective
representations of the original group. The remaining problem then is to write down
explicit representations, so our goal in this chapter is to build Hilbert spaces of wave-
functions acted upon by a group of unitary transformations. Guided by group actions
on homogeneous spaces, we will be led to the method of induced representations.
Their basic principle is very simple: starting from a representation of some subgroup
H of a group G, one induces a representation of G that acts on wavefunctions which
live on the quotient space G/H .

Induced representations are ubiquitous in mathematics and physics:

• The irreducible unitary highest-weight representations of any compact, simple Lie
group are induced from those of its maximal torus, i.e. its largest Abelian subgroup
(whose Lie algebra is the Cartan subalgebra).

• Highest-weight representations of sl(2,R) and of the Virasoro algebra are induced
from representations of their u(1) subalgebra generated by L0 (see Sect. 8.4).

• All irreducible unitary representations of the Euclidean groups, the Bargmann
groups, the Poincaré groups and the BMS3 group are induced from those of their
translation subgroups combined with “little groups” (see Chaps. 4 and 10).

The plan of this chapter is as follows. In Sect. 3.1 we review some basics of
measure theory and the ensuing construction of Hilbert spaces of square-integrable
wavefunctions. Section3.2 is concerned with measures on homogeneous spaces and
introduces quasi-regular representations — the simplest examples of induced repre-
sentations. In Sect. 3.3 we display the basic formulas of induced representations and
list some of their elementary properties. Along the way we define a basis of plane
waves, later to be interpreted as particles with definite momentum. This basis is then
used in Sect. 3.4 to compute characters. Finally, Sect. 3.5 is devoted to systems of
imprimitivity. All these notions are crucial prerequisites for Chap.4.
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It would be illusory to present a complete account of the rich theory of induced
representations, so we refer to Barut and Raczka [1] or Mackey [2] for a more
thorough exposition. For some background on measure theory, see e.g. [3, 4].

3.1 Wavefunctions and Measures

Here we start with general considerations on measure theory before reviewing the
construction of Hilbert spaces of square-integrable wavefunctions, independently
of group theory. We also define Radon–Nikodym derivatives and show that Hilbert
spaces of wavefunctions built with equivalent measures are isomorphic. For the
record, our approach will not be mathematically rigorous, and is merely intended to
give a rough picture of the actual mathematical theory.

3.1.1 Measures

When defining a quantum-mechanical system, one of the key ingredients is a pre-
scription for computing scalar products. For the spaces ofwavefunctions that wewish
to consider, this requires being able to evaluate integrals of functions on a manifold.
Integration, in turn, relies on the existence of a measure.

Measures

Let M be a set. Roughly speaking, a measure is a function μ that associates a non-
negative number with essentially any subset U of M. That number, denoted μ(U ),
“measures” the size of U . Strictly speaking, not all subsets of M can be measured:
there exists a family of subsets ofM, called “measurable sets”, and only those subsets
can actually be measured. The measure μ then is a map

μ : {measurable subsets ofM} → R̄
+ : U �→ μ(U ) (3.1)

where R̄
+ denotes the set of non-negative real numbers supplemented with +∞.

In order to qualify as a measure, this map needs to satisfy certain conditions; in
particular, it must be σ-additive: if U1, U2, etc. are disjoint measurable sets, then

μ

(+∞⋃
i=1

Ui

)
=

+∞∑
i=1

μ(Ui ) when Ui ∩Uj = ∅ ∀ i, j. (3.2)

In other words, the total measure of a set consisting of several disconnected compo-
nents must be the sum of the measures of the individual components. A measure μ
onM is said to be finite if μ(M) is finite; it is σ-finite ifM is a countable union of
measurable sets with finite measure (any finite measure is trivially σ-finite).
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For instance, the standard translation-invariant Lebesgue measure on the real line
R is defined so thatμ([a, b]) = b − a for any closed interval [a, b] ⊂ R; themeasure
takes the same value for open or half-open intervals. In particular, R is a countable
union of intervals of finite length, so the Lebesguemeasure is σ-finite. This definition
is readily generalized to Rn .

If N is a topological space, a function F : M → N is said to be measurable
if F−1(V ) is a measurable subset of M for any open set V in N . In other words,
measurable functions are those that “preserve the structure ofmeasurable sets”. Those
are the functions that we will be allowed to integrate later on.

Borel Measures

Throughout this chapter and the next ones, we systematically endow M with a
topology. One can take advantage of this structure when defining a measure:

Definition Let M be a topological space. A Borel set in M is a subset U ⊆ M
which is either an open set, or a closed set, or a union or an intersection of countably
many open or closed sets. A Borel measure on M is a measure whose measurable
sets are the Borel sets of M.

Thus, Borel measures are compatible with the topology of M. In particular, any
continuous function F : M → N is Borel-measurable. From now on, all measures
are understood to be Borel. When M is a smooth manifold, the data of a Borel
measure is equivalent to that of a volume form on M. For simplicity, we always
assume that M is a manifold.

Integrals

Measures can be used to integrate functions.1 Let μ be a Borel measure on M and
U ⊆ M a Borel set. When V is a topological vector space and F : M → V : q �→
F(q) is a measurable function, the (Lebesgue) integral of F over U relative to the
measure μ is written as2∫

U
F(q) dμ(q) or

∫
U
F dμ .

In these terms, the measure μ(U ) of a Borel set U is the integral of the function
F(q) = 1 over U :

μ(U ) =
∫
U
dμ(q). (3.3)

The word “measure” often also refers to the quantity dμ appearing in this expression.
For example, the standard translation-invariant Lebesgue measure on R

n is
denoteddμ(x) ≡ dnx , with the usual rules for integration.One can generate infinitely

1The concrete definition of integrals relies on a limiting procedure where the integrand is approxi-
mated by a sequence of locally constant functions, but we will not review these details here.
2We denote points ofM as p, q, etc. to suggest thinking of them as possible momenta of a particle.
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many other measures on R
n by multiplying the Lebesgue measure by an arbitrary

function: for any non-negative measurable map ρ : Rn → R : x �→ ρ(x), the quan-
tity dμ(x) = ρ(x)dnx is a Borel measure onRn . Another example is provided by the
sphere S2, which admits the rotation-invariant measure sin θ dθ dϕ in terms of polar
coordinates θ,ϕ. Finally, in Sect. 4.2 we will use the Lorentz-invariant measure

dμ(q) = dD−1q√
M2 + q2

(3.4)

where M2 is a positive parameter (the mass squared) while q = (q1, . . . , qD−1) is
the spatial momentum in D space-time dimensions.

3.1.2 Hilbert Spaces of Wavefunctions

Wenow have the tools needed to defineHilbert spaces of square-integrable functions.
For the sake of generality we consider wavefunctions taking values in a complex
Hilbert space E endowed with a scalar product

(·|·) : E × E → C : v,w �→ (v|w) ,

which we take to be linear in its second argument and antilinear in the first one.When
E = C we simply set (v|w) = v∗w.

Wavefunctions

Definition Let M be a topological space, μ a Borel measure on M, E a complex
Hilbert space with scalar product (·|·). Then an E-valued square-integrable wave-
function is a measurable map � : M → E such that

∫
M

dμ(q)
(
�(q)|�(q)

)
< +∞.

We denote by L2(M,μ, E) the vector space of such functions.
It is tempting to turnL2(M,μ, E) into a Hilbert space by declaring that the scalar

product of two wavefunctions is the integral of their product over M, but there is a
problem: wavefunctions need not be continuous. In particular, functions that vanish
everywhere on M except at some countable number of points, are strictly speaking
non-zero vectors in L2 even though all their would-be scalar products vanish. In
the language of conformal field theory, those are “null states”. In order to cure this
pathology, one introduces the following notion:

Definition Let μ be a Borel measure on M. A property is said to be true almost
everywhere on M if there exists a Borel set U ⊂ M such that μ(U ) = 0 and such
that the property be true on each point of M\U .

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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For example, when F and G are functions M → N , we say that F = G almost
everywhere onM and write F ∼ G if F and G differ only on a set of measure zero.
The relation ∼ is an equivalence relation. This solves the pathology of L2 spaces,
as one can show that integrals of functions that coincide almost everywhere are
equal. In particular, any function F ∼ 0 is said to vanish almost everywhere; such a
function belongs to L2 (the integral of its square vanishes) and can now be identified
with the function that vanishes identically on M. More precisely, let us denote by
N (M,μ, E) the space of E-valued measurable functions on M that vanish almost
everywhere; it is a subspace of L2 and may be seen as the set of null states (hence
the notation N ) in L2. This leads to the following notion:

Definition The space of square-integrable wavefunctions on M with values in E
relative to the measure μ is the quotient of L2 by N :

L2(M,μ, E) ≡ L2(M,μ, E)
/
N (M,μ, E). (3.5)

This space is also simply called the (E-valued) L2 space onM relative to themeasure
μ.

Elements of L2 are thus equivalence classes of functions � : M → E , two func-
tions being identified if they coincide almost everywhere. With this identification,
one can endow L2 with a norm ‖ · ‖ defined by

‖�‖2 ≡
∫
M

dμ(q)
(
�(q)|�(q)

)
. (3.6)

Strictly speakingwe shouldwrite the left-hand side of this definition as‖[�]‖2,where
[�] ∈ L2 is the class3 of� ∈ L2. However, we will systematically abuse notation by
choosing arbitrarily a representative � of a class [�], and we use the word “wave-
function” to refer both to actual functions � : M → E and to the corresponding
equivalence classes in L2.

Formula (3.6) is a well-defined norm on L2: it is independent of the chosen
representative for the class [�], and it satisfies the properties required for a norm. In
particular, a function has zero norm if it vanishes almost everywhere, i.e. if its class
is the zero vector in L2. This is indeed the solution of the pathology we encountered
in L2 spaces.

It can be shown that the space L2 is a complete normed vector space, i.e. a
Banach space, with respect to the norm (3.6). In addition the space of (equivalence
classes of) smooth functions with compact support is dense in L2(M,μ, E), so any
wavefunction can be approximated with arbitrary precision by a smooth function.

Hilbert Spaces of Wavefunctions

Definition Let μ be a Borel measure on M, E a Hilbert space with scalar product
(·|·). Let � and � be two E-valued square-integrable wavefunctions on M. Then
the scalar product of � and � is

3This class has nothing to do with the ray (2.3) despite the identical notation.

http://dx.doi.org/10.1007/978-3-319-61878-4_2
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〈�|�〉 ≡
∫
M

dμ(q)
(
�(q)|�(q)

)
, (3.7)

where the integrand reduces to �∗(q)�(q) when E = C. The space L2(M,μ, E) is
a Hilbert space with respect to this scalar product.

With this definition we can start interpreting L2(M,μ, E) as the space of states of
some quantum system. In Dirac notation we would write wavefunctions as� ≡ |�〉,
which is indeed suggested by the notation (3.7). The quantum state defined by such a
wavefunction is a ray (2.3) consisting of all functionsM → E that are equal almost
everywhere to some constant multiple of �. (Again, the notation [·] in (2.3) does not
mean the same thing as the class of a wavefunction in (3.5)!)

To interpret E-valued wavefunctions, we note the isomorphism

L2(M,μ, E) ∼= L2(M,μ,C) ⊗ E . (3.8)

For example suppose E = C
2 is the Hilbert space of a two-state system (as will be the

case, say, for the spin-1/2 representation of the Poincaré group in Sect. 4.2). In Dirac
notation, we can define an orthonormal basis {|+〉, |−〉} of E such that a generic
(normalized) state of L2(M,μ, E) takes the form

|�〉 = 1√
2

(
|φ〉 ⊗ |+〉 + |ψ〉 ⊗ |−〉

)
(3.9)

where |φ〉 and |ψ〉 are normalized complex-valued wavefunctions onM. If we think
of E as a space of spin degrees of freedom and if M is a space of momenta, then
the wavefunction (3.9) describes the propagation of two spin states with generally
different momentum distributions accounted for by φ and ψ. Note that the state
(3.9) is typically entangled with respect to the splitting (3.8); it is unentangled if
and only if |ψ〉 = eiλ|φ〉 for some real number λ. The generalization of (3.9) to
higher-dimensional spaces E is straightforward.

Remark When dealing with unitary representations of the BMS3 group in part III,
we will need to describe square-integrable wavefunctions on infinite-dimensional
manifolds (see Sect. 10.1). Until then we will not discuss this issue.

3.1.3 Equivalent Measures and Radon–Nikodym Derivatives

The definition of Hilbert spaces of square-integrable wavefunctions relies on the
measure μ used to define the scalar product (3.7). Naively, one might therefore
expect that the Hilbert spaces L2(M,μ, E) and L2(M, ν, E) differ if the measures
μ and ν do not coincide. However it is easy to show that the space L2(M,μ, E)

is essentially independent of the measure μ. Here we prove this statement while
introducing the notion of equivalent measures and their Radon–Nikodym derivative.

http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_10
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Definition Let μ, ν be two Borel measures on a manifold M. We say that μ and ν
are equivalent if they have the same sets of zero measure.

Equivalent measures can be vastly different, yet they are still pretty much the
same with regard to measure theory:

Radon–Nikodym theorem Let μ and ν be equivalent σ-finite measures. Then there
exists a measurable function ρ : M → R

+ such that

ν(U ) =
∫
U

ρ(q)dμ(q) for any Borel set U. (3.10)

This relation is often written in infinitesimal form

dν(q) = ρ(q)dμ(q) or ρ(q) = dν(q)

dμ(q)
. (3.11)

In addition, any other function ρ̃ satisfying this property coincides with ρ almost
everywhere onM. The function ρ is called the Radon–Nikodym derivative of ν with
respect to μ.4 A proof of this theorem can be found in [5].

For example, wementioned below (3.3) thatwhen dnx is the Lebesguemeasure on
R

n , any non-negative function ρ gives rise to a new measure ρ(x)dnx . The Radon–
Nikodym derivative of that measure with respect to the Lebesgue measure then
coincides with the function ρ. In particular, when ρ(x) only vanishes on a set of
Lebesgue measure zero, the measures dnx and ρ(x)dnx are equivalent.

Remark When μ and ν are equivalent measures, one has dμ(q)/dν(q) ∼
[dν(q)/dμ(q)]−1, i.e. the Radon–Nikodym of μ with respect to ν is (almost every-
where) the inverse of the Radon–Nikodym of ν with respect to μ.

Isomorphic L2 spaces

The notion of equivalent measures allows us to address the question raised above,
namely whether the Hilbert spaces L2(M,μ, E) and L2(M, ν, E) differ if the mea-
sures μ and ν differ.

Proposition Let μ and ν be equivalent Borel measures onM, E a Hilbert space; we
write L2(M,μ, E) ≡ L2(μ) and similarly for ν. Then there is an isometry

U : L2(μ) → L2(ν) : � �→ U · � with (U · �)(q) ≡
√
dμ(q)

dν(q)
�(q) (3.12)

so the spaces L2(M,μ, E) and L2(M, ν, E) are isomorphic as Hilbert spaces.

4There exist infinitelymany functions that all represent equallywell theRadon–Nikodymderivative;
the theoremensures that these functions agree, except possibly on a set of zeromeasure.Accordingly,
we call “the” Radon–Nikodym derivative any function that satisfies (3.10).
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Proof The map (3.12) is manifestly linear and invertible, since the measures μ and ν
are equivalent so that the Radon–Nikodym derivative ρ = dν/dμ is strictly positive
almost everywhere. It only remains to prove that U preserves the scalar products
(3.7); let us denote them by 〈·|·〉μ and 〈·|·〉ν in L2(μ) and L2(ν), respectively. For any
two μ-square-integrable wavefunctions � and �, the definitions (3.11) and (3.12)
readily yield 〈U · �|U · �〉ν = 〈�|�〉μ, which proves that U is an isometry. �

This proposition says that the structure of the Hilbert space L2(M,μ, E) does
not depend on the measure μ, since any other equivalent measure would give rise
to an isomorphic Hilbert space. A similar phenomenon will occur in Sect. 3.2.2,
where induced representations built with different scalar products will turn out to be
equivalent.

3.2 Quasi-regular Representations

In the previous pages we have seen how to build spaces of wavefunctions. Our goal
now is to endow such Hilbert spaces with a unitary group action. The strategy will
be to take the manifoldM (on which wavefunctions are defined) to be homogeneous
with respect to some group action, then use this action to define unitary operators.
We now describe this approach after recalling some basic properties of group actions
and measures on homogeneous spaces. This will lead to the notion of quasi-regular
representations, which provides the simplest example of induced representations.

3.2.1 Quasi-invariant Measures on Homogeneous Spaces

Group Actions and Orbits

Definition LetM be a manifold, G a Lie group.5 An action of G onM is a smooth
map G × M → M : ( f, q) �→ f · q such that e · q = q and f · (g · q) = ( f g) · q
for all group elements f, g and any q ∈ M. Equivalently, an action of G on M is a
homomorphism from G to the group Diff(M) of diffeomorphisms of M.

There exist many important examples of group actions in physics: the space Rn

can be seen as an Abelian group acting on itself by the addition of vectors; the sphere
S2 is acted upon by rotations. More generally, any group representation is a linear
action of a group on a vector space; in particular the energy-momentum of a particle
in Minkowski space is acted upon linearly by the Lorentz group.

Consider an action of G on M, and pick a point p ∈ M. The orbit of p is the
submanifold ofM consisting of all points that can be reached by acting on pwithG:

Op ≡ { f · p| f ∈ G} . (3.13)

5As before elements of G are written as f , g, etc. and the identity is denoted e.
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The orbit is independent of the choice of p in the sense that, whenever q ∈ Op, we
haveOp = Oq . The stabilizer of p ∈ M is the subgroup ofG that leaves it invariant,

Gp ≡ { f ∈ G| f · p = p} . (3.14)

If q is another point inOp, and if g ∈ G is such that g · p = q, then the stabilizer of q
is g Gp g−1, which is isomorphic to Gp. (In particular, one often abuses terminology
by saying “the stabilizer of an orbit” instead of the stabilizer of a point on the orbit.)
The stabilizer is a (closed) subgroup of G and the orbit (3.13) is diffeomorphic to
the coset space

Op
∼= G/Gp . (3.15)

This diffeomorphism is explicitly given by the bijection G/Gp → Op : f G p �→
f · p.
Homogeneous Spaces

Definition An action of a group G on M is said to be transitive when for any two
points p, q ∈ M there exists a group element f such that f · p = q. The space M
is then said to be a homogeneous space for this action.

In particular a homogeneous space coincides with the orbit of any of its points
under the group action:M = Op for any p ∈ M. It follows that any homogeneous
space can be written as a coset space (3.15).

The simplest example of a G-homogeneous space is the group G itself, with the
action given by left multiplication:

g �−→ L f (g) = f g. (3.16)

The stabilizer in that case is trivial. Note that right multiplication

g �−→ R f (g) = g f (3.17)

is not quite a group action since R f ◦ Rg = Rg f does not coincide with R f g.
This can be cured by considering right multiplication by inverse elements, i.e.
g �→ R f −1g = g f −1. In the aforementioned example ofRn , seen as anAbelian group
acting on itself by the addition of vectors, left and right multiplications coincide.
(This is true for any Abelian group.) The sphere S2 is a more interesting example
of homogeneous space, since it is acted upon transitively by the group of rota-
tions SO(3) but has a non-trivial stabilizer SO(2), and is therefore diffeomorphic
to the quotient SO(3)/SO(2). More generally, one has a family of diffeomorphisms
Sn ∼= SO(n + 1)/SO(n). Homogeneous spaces will play a central role in represen-
tation theory, so we will encouter many more examples of transitive actions later in
this thesis.
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The Haar Measure

We now initiate the study of measure theory on homogeneous spaces.

Definition LetM be a homogeneous space with respect to the action of a group G;
let μ be a Borel measure on M. We say that the measure is invariant under G if
μ( f ·U ) = μ(U ) for all g ∈ G and for any Borel set U .

For example, the measure sin θ dθ dϕ on a sphere S2 is invariant under rotations,
while themomentummeasure (3.4) is invariant under Lorentz transformations.When
the homogeneous space M is the group manifold G itself, one has the following
result:

Haar’s theorem Let G be a finite-dimensional Lie group. Then, up to a positive
multiplicative constant, there exists a unique Borel measure on G invariant under
left multiplication (3.16), known as the left Haar measure on G.

Proof Any left-invariant volume form on G is the pull-back by left multiplication of
a volume form on the tangent space TeG at the identity. SinceG is finite-dimensional
the volume form on TeG is unique up to a positive multiplicative constant, so the
theorem follows. (See e.g. [6] for details.) �

The same theorem would hold for right multiplications, although the resulting
right Haar measure generally differs from the left one. If the group G is Abelian,
any left-invariant measure is also right-invariant. For instance, the standard measure
dnx on Rn is the translation-invariant Haar measure for the Abelian group R

n .

Quasi-invariant Measures

Given a homogeneous space M, we wish to integrate functions over it and we ask
whether there exists an invariant measure. It turns out that this is not always the case
(see e.g. [1]), so one introduces the following weaker notion of invariance:

Definition LetM be a homogeneous space with respect to the action of a group G.
A Borel measure μ on M is said to be quasi-invariant under G if, for any group
element f , the measure μ f defined by

μ f (U ) ≡ μ( f ·U ) for any Borel set U (3.18)

is equivalent to μ.
Equivalent measures are related through (3.11) by their Radon–Nikodym deriva-

tive. Accordingly, when μ is a quasi-invariant measure on a homogeneous spaceM,
we denote the Radon–Nikodym derivative of μ f with respect to μ by

ρ f (q) ≡ dμ f (q)

dμ(q)
= dμ( f · q)

dμ(q)
(3.19)

for any f ∈ G and any q ∈ M. We shall refer to it as “the” Radon–Nikodym deriv-
ative of μ under the action of G. Note that it satisfies the important property
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ρ f g(q) = ρ f (g · q)ρ f (q). (3.20)

The measure μ is invariant if and only if its Radon–Nikodym derivative ρ f is equal
ot one (almost everywhere) for any group element f .

Intuitively one can think of the Radon–Nikodym derivative (3.19) as an anomaly:
since μ is defined on a homogeneous space, one naively expects it to be invariant
under the group action. TheRadon–Nikodymderivativemeasures the extent towhich
invariance is spoiled. Taking again the example of Rn , the Lebesgue measure dnx is
invariant under translations and rotations, but not under arbitrary diffeomorphisms.
Indeed, for f : x �→ f (x) a diffeomorphismofRn , the Lebesguemeasure transforms
as

dμ f (x) = dn[ f (x)] =
∣∣∣∣∂ f

∂x

∣∣∣∣ dnx, (3.21)

where |∂ f/∂x | is the Jacobian of f . Thus the Radon–Nikodym derivative of a quasi-
invariant measure can also be seen as a generalization of the Jacobian.

Since we motivated quasi-invariant measures by the observation that invariant
measures do not always exist, onemightworry that a similar problem arises for quasi-
invariant measures. Fortunately one can show that, in contrast to invariant measures,
quasi-invariant measures do always exist on any finite-dimensional homogeneous
space (see e.g. [1]). We shall discuss the infinite-dimensional generalization of that
statement in Sect. 10.1. Note that the existence of one quasi-invariant measure μ on
M implies the existence of infinitely many of them, since multiplying μ by any
positive function yields another quasi-invariant measure.

3.2.2 The Simplest Induced Representations

Weare now inposition to describe quasi-regular representations. LetMbe amanifold
acted upon by a groupG, and consider a vector space of wavefunctions� : M → C.
We then readily define a representation T of G in that space by writing

(T [ f ] · �) (q) ≡ �( f −1 · q). (3.22)

Each operator T [ f ] is manifestly linear, and the fact that this is indeed a representa-
tion follows from the fact that themap q �→ f · q is a group action. The interpretation
of formula (3.22) is simple: if the wavefunction � is sharply centred around some
point k ofM, then the operator T [ f ] maps � on a new wavefunction, now centred
around the point f · k. In Chap.4 the spaceM will consist of the allowed momenta
of a particle, � will be the particle’s wavefunction (in momentum space), and the
map q �→ f · q will be an action by boosts or rotations (Fig. 3.1).

http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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Fig. 3.1 Awavefunction� onM = R centred around some point k is acted upon by a unitary oper-
ator T [ f ] that implements the transformation k �→ f · k. The resulting transformed wavefunction
T [ f ] · � is the old one, translated by f

In order to interpret formula (3.22) as the action of a symmetry group on a Hilbert
space of wavefunctions, we need to make sure that each operator T [ f ] is unitary.
If M is a homogeneous space and μ is a quasi-invariant measure on M, the scalar
product of wavefunctions is (3.7) with (�(q)|�(q)) = �∗(q)�(q). Now it is easy
to verify that the representation (3.22) is generally not unitary for this scalar product:

〈T [ f ]�|T [ f ]�〉 =
∫
M

dμ(q)�∗( f −1 · q)�( f −1 · q)
(3.19)=∫

M
dμ(q)ρ f (q)�∗(q)�(q). (3.23)

The far right-hand side generally does not coincide with the original scalar product
(3.7) because it involves the Radon–Nikodym derivative (3.19). Thus, in order to
ensure unitarity, we need to correct formula (3.22) by a factor that compensates the
non-trivial transformation law of μ:

Definition Let G be a Lie group acting transitively on a manifold M. Let μ be a
quasi-invariant measure onM and let L2(M,μ,C) be the space of square-integrable
wavefunctions on M. The quasi-regular representation T of G acts on this space
according to

(T [ f ] · �) (q) ≡
√

ρ f −1(q) �( f −1 · q) (3.24)

for any wavefunction �, where ρ f is the Radon–Nikodym derivative (3.19) of μ. If
μ is invariant, the quasi-regular representation boils down to (3.22).

Proposition The quasi-regular representation defined by (3.24) is a unitary repre-
sentation of G in L2(M,μ,C).

Proof First we need to check that (3.24) actually defines a representation, i.e. that
T [ f · g] = T [ f ] ◦ T [g] for all f, g ∈ G. As in (3.22), linearity of T [ f ] is obvious.
Now pick a wavefunction � ∈ L2(M,μ,C). At some point q ∈ M, we find

(T [ f g]�)(q)
(3.24)= [

ρg−1 f −1(q)
]1/2

�
(
g−1 · ( f −1 · q)

)
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where we relied on the fact that q �→ f · q is a group action. Now using (3.20) and
the definition (3.24), we can rewrite this as

(T [ f g]�)(q) = [
ρg−1( f −1 · q)ρ f −1(q)

]1/2
�

(
g−1 · ( f −1 · q)

)
(3.25)

= [
ρ f −1(q)

]1/2
(T [g]�) ( f −1 · q) =

((
T [ f ] ◦ T [g]) · �

)
(q) ,

(3.26)

which proves that (3.24) is indeed a representation. To complete the proof we also
have to show that T is unitary for the scalar product (3.7) with (�(q)|�(q)) =
�∗(q)�(q). Repeating the computation (3.23)we nowfind that the Radon–Nikodym
derivative in (3.24) yields an extra term in the integrand. Using (3.20) and the fact
that ρe = 1, this term cancels the Radon–Nikodym derivative in (3.23) so (3.24) is
indeed unitary. �

Remark When the homogeneous space M coincides with the group G and is
endowed with the invariant Haar measure, formula (3.22) defines a unitary rep-
resentation of G known as the regular representation. Quasi-regular representations
extend this concept by trading the base manifold G for an arbitrary homogeneous
space M.

Equivalence of Quasi-regular Representations

Recall that L2 spaces defined with equivalent measures are isometric via the map
(3.12). One may wonder how that statement affects quasi-regular representations: is
it true that two representations of the form (3.24) are equivalent if they are defined
using different but equivalent measures? The answer is yes: if μ and ν are equivalent
quasi-invariant measures on M and if we denote the corresponding quasi-regular
representations by Tμ and Tν respectively, then the isometry (3.12) is an intertwiner:

U ◦ Tμ[ f ] = Tν[ f ] ◦ U for all f ∈ G. (3.27)

Accordingly, the representations Tμ and Tν are unitarily equivalent. This is to say that
the quasi-regular representation (3.24) is essentially independent of the measure μ.

3.2.3 Radon–Nikodym Is a Cocycle*

Here we show that property (3.20) is a cohomological statement: it says that the
Radon–Nikodymderivative is a one-cocyclewith respect to the representation (3.22).
This is an anecdotal observation, so the hasty reader may go directly to Sect. 3.3.

Proposition Let μ be a quasi-invariant measure on a homogeneous spaceM and let
(3.19) be its Radon–Nikodym derivative. Then the map

log ρ : G → C∞(M) : f �→ log(ρ f −1) (3.28)
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is a one-cocycle with respect to the representation (3.22), with the understanding that
log(ρ f −1) is the function on M mapping q on log

(
ρ f −1(q)

)
.

Proof We need to show that the Chevalley–Eilenberg differential (2.31) of the map
(3.28) vanishes. Using (3.22) we find

(d log ρ) f g(q) = log ρg−1( f −1 · q) + log ρ f −1(q) − log ρg−1 f −1(q) ,

which vanishes by virtue of property (3.20). �

Let us discuss the measure-theoretic interpretation of this cohomological state-
ment. For example, suppose the map (3.28) is a trivial one-cocycle. Then

log ρ f −1(q) = (d�) f (q)
(2.31)= (T [ f ] · �)(q) − �(q)

(3.22)= �( f −1 · q) − �(q)

for some function �(q). Equivalently,

dμ( f · q)

dμ(q)
= e�( f ·q)−�(q), i.e. e−�(q)dμ(q) = e−�( f ·q)dμ( f · q) , (3.29)

which says that the quasi-invariant measure μ is actually an invariantmeasure in dis-
guise! Indeed, the measure ν defined by dν(q) = e−�(q)dμ(q) is invariant by virtue
of (3.29). In other words, the first cohomology of G with values in the space of func-
tions onM classifies the inequivalent quasi-invariant measures onM, twomeasures
being equivalent if they are related to one another by a function that multiplies them.
In particular, the first cohomology vanishes if all quasi-invariant measures onM are
equivalent to an invariant measure.

We can also rephrase this in the language of representation theory: the quasi-
regular representation (3.24) is a (multiplicative) affine module (2.33) on top of the
original representation (3.22). Two such modules are equivalent if the corresponding
measures are equivalent.

Remark The cohomological properties of the Radon–Nikodym derivative have
applications in physics: we mentioned below (3.19) that the Radon–Nikodym deriv-
ative may be thought of as an anomaly, and indeed anomalies in quantum field theory
are one-cocycles for theBRSTdifferential, valued in a suitable space of functions [7].
Our observation on the Radon–Nikodym derivative may be seen as a baby version
of that general statement.

3.3 Defining Induced Representations

We now extend the construction of quasi-regular representations. Suppose we have
a group G with some (closed) subgroup H . Given a representation S of H , we wish
to induce a corresponding representation T of G. To describe this mechanism we
first need to study in more detail the homogeneous manifold

http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_2
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M ∼= G/H . (3.30)

We will then define an action T of G on wavefunctions that live on M.

3.3.1 Standard Boosts

In Sect. 3.2.1 we introduced homogeneous spaces and observed that they can be
written as coset spaces G/Gp, where Gp is the stabilizer of some point p ∈ M.
Nownote that, conversely, any coset spaceG/H determines a homogeneousmanifold
(provided H is a closed subgroup of G). Indeed the elements of G/H are left cosets
gH , where g spans G, and the action of G on G/H is given by left multiplication:
gH �→ f · (gH) = ( f g)H . In particular one can think of G/H as a manifold M
where the coset gH corresponds to the point q = g · p, where p is identified with the
coset eH at the identity. The stabilizer of g · p is gHg−1, as noted below (3.14). Thus
from now on we describe the space G/H with the same notation as in Sect. 3.2.1.

Now consider the point p ∈ M, identified with the identity coset eH in G/H .
Since M is a homogeneous space one can map p on any other point q ∈ M, with
a group element g ∈ G such that g · p = q. Given q, this group element is only
defined up to multiplication from the right by an element of H , since h · p = p for
any h ∈ H .

Definition Let G act transitively on M ∼= G/H and let p ∈ M. Then a family of
standard boosts for p on M is a map

M → G : q �→ gq such that gq · p = q. (3.31)

Any homogeneous manifold admits a family of standard boosts. For example,
in special relativity, the map (3.31) would typically be an assignment of a Lorentz
boost gq for each possible energy-momentum vector q of a massive particle. If p is
the energy-momentum of the particle at rest, gq would map this momentum p on
the boosted momentum q. In fact, in the latter case this assignment can be chosen
in such a way that gq depends continuously on q, so the family of standard boosts
is continuous. In all cases of interest below, continuous families of standard boosts
will exist, so from now on we always assume that the map (3.31) is continuous.

Remark The existence of a continuous family of standard boosts is equivalent to
that of a global section for the principal bundle G → G/H , which in turn amounts
to saying that this bundle is trivial (see e.g. [8]). In general this is not the case — the
typical example is the non-trivial bundle SO(n + 1) → Sn , which is relevant to the
Euclidean group in (n + 1) dimensions. However, all relativistic symmetry groups
as well as BMS3 are such that continuous families of standard boosts do exist,6 so
we do not need to dwell on this subtlety any further.

6This actually follows from the fact that typical momentum orbits for such groups are homotopic
to a point, which then implies that the corresponding bundles G → G/H are trivial.
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3.3.2 Induced Representations

Definition Let G be a group acting transitively on a manifold M endowed with a
quasi-invariant measure μ. Let p ∈ M be stabilized by a closed subgroup H of G
and let the map (3.31) be a continuous family of standard boosts on M. Then the
representation T of G induced by S acts in the Hilbert space H = L2(M,μ, E)

according to

(T [ f ] · �) (q) ≡
√

ρ f −1(q) S[g−1
q f g f −1·q ] �( f −1 · q) (3.32)

for any wavefunction �, where ρ denotes the Radon–Nikodym derivative (3.19). It
is common to write

T = IndGH (S). (3.33)

As given here, formula (3.32) comes a bit out of the blue, so it is worth analysing
its elementary features. First note that, if we denote the trivial representation of a
group by the symbol 1, then IndGH (1) is the quasi-regular representation (3.24) of G
on G/H while IndG{e}(1) is the regular representation. Formula (3.32) extends these
constructions by including a non-trivial action of H in an internal space E . Before
interpreting (3.32) any further, we now verify that it is a consistent definition.

Consistency

Up to the term involving S, the right-hand side of (3.32) coincides with the quasi-
regular representation (3.24), so the only potential problem could arise from the
insertion of S. But since the map (3.31) is a family of standard boosts, we have

(
g−1
q f g f −1·q

) · p = g−1
q ·

(
f · (

g f −1·q · p)) = g−1
q ·

(
f · (

f −1 · q)) = g−1
q · q = p ,

so the combination g−1
q f g f −1·q belongs to the stabilizer H of p, as it should. Since

by assumption � takes its values in the carrier space E of S, we conclude that the
right-hand side of (3.32) is well-defined. For each f ∈ G, it defines a linear operator
T [ f ] acting on E-valued functions on M.

Proposition Let H = L2(M,μ, E). Then the map T : G → GL(H ) defined by
(3.32) is a unitary representation of G.

Proof If it were not for the representation S, formula (3.32) would coincide with
(3.24); since the latter is a unitary representation of G, we only have to convince
ourselves that this feature is not spoiled by the presence of S. Noting that

g−1
q f g g( f g)−1·q = (

g−1
q f g f −1·q

) · (
g−1
f −1·q g g( f g)−1·q

)
(3.34)
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and using the fact that S is a representation of H , one can mimick the sequence of
Eqs. (3.25) and (3.26) forT given by (3.32), which implies that it is indeed a represen-
tation. As for unitarity, it follows from the fact that S is unitary:(
S[h]�(q)

∣∣S[h]�(q)
) = (

�(q)
∣∣�(q)

)
for all wavefunctions �,�, any point q ∈

M and any h ∈ H . �

Interpretation

The basic interpretation of the induced representation (3.32) is the same as for (3.24):
�( f −1 · q) represents the fact that the wavefunction � is “boosted” by f , while the
factor

√
ρ f −1 ensures unitarity. The new ingredient is the combination

S
[
g−1
q f g f −1·q

] ≡ Wq [ f ]. (3.35)

Its appearance represents the fact that, in contrast to the quasi-regular representation,
wavefunctions take their values not inC, but in somemore general “internal” Hilbert
space E carrying a representation S of H .

When interpreting induced representations as particles, H is typically a group
of spatial rotations combined with space-time translations, the space E consists of
spin degrees of freedom, and S determines the value of spin. In that context the
operator (3.35) is known as the Wigner rotation associated with f at momentum
q. The quasi-regular representation (3.24) can thus be seen as a “scalar” induced
representation, as opposed to the spinning case (3.32). Wigner rotations are trivial
for scalar particles. Note that because S is a representation, Wigner rotations satisfy
the property Wq [ f g] = Wq [ f ]W f −1·q [g].
RemarkWementioned on p. xxx that generic homogeneous manifolds do not admit
continuous families of standard boosts, which invalidates the globalwell-definiteness
of the Wigner rotation (3.35). This problem can be cured by reformulating induced
representations in terms of wavefunctions defined on the group manifold G rather
than G/H (see e.g. [1]). In this thesis we systematically use the homogeneous space
viewpoint (3.32), as it will suffice for all cases of interest below. This being said,
note that the reformulation in terms of wavefunctions on G is useful for certain
applications of three-dimensional higher-spin theories [9, 10] due to the relation
between induced representations and harmonic analysis on homogeneous spaces
[11, 12].

3.3.3 Properties of Induced Representations

Induced representations have a number of important properties that we now explore.
We first show that the definition (3.32) is “robust” in that it depends neither on the
choice of the measure μ, nor on the choice of standard boosts (3.31). Then we turn to
the behaviour of induced representations under operations such as direct sums and
tensor products.
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Robustness

Formula (3.32) depends not only on the inducing data (the group G, its subgroup H
and a spin representation S), but also on the measure μ on M ∼= G/H and on the
choice of a family of standard boosts gq . Naively, one expects all these parameters
to affect the representation. We now show that this is not the case.

As far as the measure is concerned, one readily verifies that two induced rep-
resentations defined with the same inducing data and the same standard boosts but
different, though equivalent, quasi-invariant measures, are unitarily equivalent. The
proof is essentially the same as for quasi-regular representations (see Eq. (3.27)), and
the intertwiner is the map (3.12). As regards standard boosts, a similar result holds:

Proposition LetM ∼= G/H , S a spin representation of H ,H = L2(M,μ, E). Let
g : M → G : q �→ gq and g′ : M → G : q �→ g′

q be two continuous families of
standard boosts and call T , T ′ (respectively) the corresponding induced representa-
tions of G. Then there is a unitary operator

V : H → H : � �→ V · � with (V · �) (q) = S
[
g−1
q · g′

q

]
�(q) (3.36)

that intertwines T and T ′, which are therefore unitarily equivalent:

T [ f ] ◦ V = V ◦ T ′[ f ] ∀ f ∈ G. (3.37)

Proof The fact that V is a unitary operator follows from unitarity of S. Property
(3.37) then follows from the definitions (3.32) and (3.36). �

A corollary of these observations on robustness is that one may unambiguously
say “the” representation of G induced by the representation S of H , without any
reference to the measure or to the choice of standard boosts.

RemarkThe transformation (3.36)maybe seen as a gauge transformationwith gauge
group H . Indeed the combination g−1

q g′
q ∈ H can depend on q in an arbitrary way,

owing to one’s freedom in the choice of standard boosts. It acts on wavefunctions
as a momentum-dependent transformation � �→ V · � given by the representation
S, and each such transformation maps the system on a unitarily equivalent one. In
fact, the differentiation of the operator S[g−1

q f g f −1·q ] defines a gauge field on G/H
valued in the Lie algebra h of H , and the Wigner rotation itself may be seen as a
holonomy (see e.g. [13, 14]).

Operations on Induced Representations

We now study the behaviour of induced representations under standard operations
such as conjugation, direct sums and the like. The proofs are omitted and we refer
to [1] for details.

Let E be a Hilbert space with scalar product (·|·). We call conjugation the mapC :
E → E∗

cts : v �→ (v|·), where E∗
cts denotes the space of continuous linear functionals

7

7Recall that any continuous linear functional on a Hilbert space E is a scalar product (v|·) for some
fixed vector v ∈ E .
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on E . Then, if S is a unitary representation acting on E , its conjugate representation
is S ≡ C ◦ S ◦ C−1. In the context of induced representations, one can then show

that8 IndGH (S) ∼ IndGH (S), i.e. the representation induced by the conjugate of S is
unitarily equivalent to the conjugate of the representation induced by S.

One can similarly show that induced representations behave well under direct
sums and tensor products thanks to the unitary equivalences

IndGH (S1 ⊕ S2) ∼ IndGH (S1) ⊕ IndGH (S2) ,

IndGH (S1 ⊗ S2) ∼ IndGH (S1) ⊗ IndGH (S2) .
(3.38)

As a corollary, if S is reducible, then IndGH (S) is reducible. The converse is not
true; for instance, if H = 1 is the trivial subgroup with S the irreducible trivial
representation, then T is the regular representation, which is generally reducible.

One should also check that induction itself is a “good” operation on representa-
tions. This is guaranteed by the theorem of induction in stages: let H1 be a closed
subgroup of H2, which itself is a closed subgroup of G. Let S be a unitary represen-
tation of H1. Then one has the following unitary equivalence of representations:

IndGH1
(S) ∼ IndGH2

(
IndH2

H1
(S)

)
.

In other words, inducing directly from H1 to G, or from H1 to H2 and then to G, are
the same operations.

3.3.4 Plane Waves

For practical purposes it is convenient to rewrite formula (3.32) in a basis of
plane wave states. In the relativistic context, they represent particles with definite
momentum.

Delta Functions

Let M ∼= G/H be a homogeneous space, μ a quasi-invariant measure on M. Pick
a point k ∈ M. We define the Dirac distributionδk at k associated with μ as the
distribution such that 〈δk,ϕ〉 ≡ ϕ(k) for any test function ϕ onM. Equivalently, we
introduce a “Dirac delta function” δ(k, ·) such that

〈δk,ϕ〉 =
∫
M

dμ(q)δ(k, q)ϕ(q) ≡ ϕ(k). (3.39)

Thus the distribution δk acts on a test function ϕ(·) by integrating it against the delta
function δ(k, ·).

8The symbol ∼ denotes unitary equivalence of representations.
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Note that the definition of the delta function δ relies on the measure μ since the
combination dμ(q)δ(k, q) is G-invariant by design. To make this explicit, let us
denote by δμ the delta function associated with μ. If ρ is some positive function on
M and dν(q) = ρ(q)dμ(q) is a new measure, then the delta function δν associated
with ν differs from δμ by a factor ρ:

δν(k, q) = δμ(k, q)

ρ(q)
. (3.40)

In particular, since μ is quasi-invariant under G, for any f ∈ G we have

δμ( f · k, f · q) = δμ(k, q)

ρ f (q)
(3.41)

where ρ f is the Radon–Nikodym derivative (3.19). Thinking of the latter as a kind
of Jacobian, Eq. (3.41) is a restatement of the transformation law of the Dirac distri-
bution under changes of coordinates. In what follows we shall not indicate explicitly
the dependence of δ on the measure μ.

The best known Dirac distribution is the one associated with the translation-
invariant Lebesgue measure on Rn . We will encounter this delta function repeatedly
so we denote it by δ(n) to distinguish it from other Dirac distributions. With that
notation, the delta function associated with the Lorentz-invariant measure (3.4) is

δ(k,q) =
√
M2 + q2 δ(D−1)(k − q). (3.42)

Plane Wave States

Definition Let {e1, . . . , eN } be a countable orthonormal basis9 of E . For � ∈
{1, . . . , N } and k ∈ M, we call plane wave state with spin � and momentum k
the wavefunction

�k,�(q) ≡ e� δ(k, q) (3.43)

where δ is the Dirac distribution associated with the measure μ onM.
In non-relativistic quantummechanics, if we were describing a particle on the line

M = R, a plane wave would typically be one of the states �x = |x〉 representing
a particle located at the point x ∈ R (with infinite momentum uncertainty). In the
dual, momentum-space picture, a plane wave would be a state�k = |k〉with definite
momentum k (but infinite position uncertainty). Our terminology is motivated by the
latter viewpoint. In the Poincaré case a wavefunction (3.43) will describe a particle
with definite spin projection � and energy-momentum k, i.e. a typical asymptotic
state in a scattering experiment. With the notation of (3.9), for instance, the space E
of spin degrees of freedom is two-dimensional and has a basis {|+〉, |−〉} = {e1, e2}
consisting of states with definite spin along the vertical axis.

9We are assuming that E is a separable Hilbert space; N may be infinite.
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Scalar products of plane waves can be evaluated thanks to the definition (3.7).
Using the fact that the basis of ek’s is orthonormal and the definition (3.39) of the
delta function, one finds

〈�k,�|�k ′,�′ 〉 = δ(k, k ′)δ��′ . (3.44)

This property allows us to see in which sense plane waves form a “basis” of the
Hilbert space H = L2(M,μ, E). Indeed, any wavefunction � : M → E can be
written as

�(q) =
N∑

�=1

��(q) e� where ��(k) = 〈�k,�|�〉 .

Removing the argument q, this says that any wavepacket � is a superposition of
plane waves:

� =
∫
M

dμ(k)
N∑

�=1

��(k)�k,� =
∫
M

dμ(k)
N∑

�=1

〈�k,�|�〉�k,� . (3.45)

Note that this can be interpreted as the completeness relation

I =
∫
M

dμ(k)
N∑

�=1

〈�k,�|·〉�k,� (3.46)

where I is the identity operator. In the more common (but less precise) Dirac notation
this would be a sum of projectors |�k,�〉〈�k,�|. For example, for a particle on the real
line, the Dirac form of this completeness relation would read I = ∫

R
dx |x〉〈x | in

position space, or I = ∫
R
dk|k〉〈k| in momentum space. We will show in Sect. 3.5

that the existence of a family of projectors associated with M is one of the key
properties of induced representations.

From the construction of plane waves we see that induced representations are
just an upgraded version of one-particle quantum mechanics, with extra freedom in
the choice of the space M, the group G, and the spin states contained in E . This
observation will guide us in developing our intuition of induced representations,
especially in part III of the thesis.

Remark The quantity (3.43) is not a square-integrable function onM and therefore
does not, strictly speaking, belong to the Hilbert space. The same problem arises
in standard quantum mechanics, where the states |x〉 or |k〉 form a “basis” only in
a weak sense. Intuitively one can think of plane waves (3.43) as idealizations of
Gaussian wavefunctions centred at k in the limit where their spread goes to zero. A
more rigorous way to include such states is to work with so-called rigged Hilbert
spaces (see e.g. [15, 16]), which are designed so as to include both standard square-
integrable functions and distributions.
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Boosted Plane Waves

We can now rewrite formula (3.32) for induced representations in terms of plane
waves. Choosing a plane wave (3.43), for f ∈ G and q ∈ M we find

�k,�( f
−1 · q) = ρ f (k)� f ·k,�(q) (3.47)

where we used (3.41) and the property (3.20). Note what we have achieved: in the
original definition (3.32) the argument of � changes between the left and the right-
hand sides; here, by contrast, the argument will be the same, but what changes is the
label specifying the momentum of the plane wave. Indeed, using (3.47) in formula
(3.32), we find

(
T [ f ] · �k,�

)
(q) =

√
ρ f −1(q)ρ f (k)S

[
g−1
q f g f −1·q

] · � f ·k,�(q).

Since the plane wave on the right-hand side contains a delta function δ( f · k, q), we
can replace all q’s in this expression by f · k and remove the argument from both
sides. Using once more (3.20) in

√
ρ f −1(q)ρ f (k) = √

ρ f (k), we end up with

T [ f ] · �k,� = √
ρ f (k) S

[
g−1
f ·k f gk

]
· � f ·k,� (3.48)

This formula is the simplest rewriting of the induced representation (3.32). The only
extra improvement we could still add is to write as (S[· · · ])��′ the matrix element of
the operator S[· · · ] between the states e� and e�′ , whereupon (3.48) becomes

T [ f ] · �k,� = √
ρ f (k)

(
S

[
g−1
f ·k · f · gk

])
�′,�

· � f ·k,�′ (3.49)

with implicit summation over �′.
Formula (3.48) gives a geometric picture of the states of an induced representation.

Indeed, the label k spans all points of M, so we can now view each point of M
as a quantum state. (More precisely, a point of M is a family of dim(E) linearly
independent states.) Two different points ofM, say k and k ′, then correspond to two
linearly independent states �k and �k ′ , and a transformation f of M mapping k
on k ′ = f · k gives rise to a unitary operator T [ f ] relating the corresponding plane
waves. This is a geometrization of representation theory: we can “see” each linearly
independent state of the representation T as a point of G/H . This observation is
at the core of the orbit method, which consists in quantizing suitable homogeneous
manifolds to obtain unitary group representations (see Chap.5). In three-dimensional
gravity, the phase space of gravitational perturbations will turn out to be precisely
such a homogeneous manifold, and its quantization will produce a Hilbert space of
“soft” or “boundary gravitons”. We will address these questions in Chap.8 and in
part III of the thesis.

http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_8
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3.4 Characters

In this section we describe the characters associated with induced representations.
We start by motivating and defining characters in general terms, before proving the
Frobenius formula. We end by discussing the relation between characters and fixed
point theorems.

3.4.1 Characters Are Partition Functions

Unitary representations may be seen as general models of symmetric quantum sys-
tems: any system invariant under a certain symmetry group G forms a (generally
reducible, generally projective) unitary representation of G. Accordingly, symmetry
generators provide natural observables in the system, and one may ask about the
properties of these observables — typically, about their spectrum.

When a system is invariant under time translations, for instance, the correspond-
ing symmetry generator is the Hamiltonian operator H . The information about its
spectrum is captured by the canonical partition function10

Z(β) = Tr
(
e−βH

)
, (3.50)

where β is the inverse of the temperature. If the system admits extra symmetries such
as, say, rotations, one can look for the maximal set of mutually commuting symmetry
generators Qa and switch on their chemical potentials μa .11 The spectrum of these
new operators, together with H , is then contained in the grand canonical partition
function

Z(β,μ1, . . . ,μr ) = Tr

(
exp

[
− β

(
H −

r∑
a=1

μaQa

)])
. (3.51)

Now suppose we take β to be purely imaginary (while keeping the μa’s real) in this
expression. Then the operator inside the trace is unitary, since it is an exponential
of anti-Hermitian operators. In fact, it is a symmetry transformation acting in the
Hilbert space according to some unitary representation T , so we can write

Z(β,μ1, . . . ,μr ) = Tr (T [ f ])

for some element f belonging to the symmetry groupG. Thismotivates the following
definition:

10The notation “Z” stands for the German word Zustandssumme, meaning “sum over states.”
11Here the index a runs from one to r , the latter being essentially the rank of the symmetry group.
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Definition Let T be a representation of a group G in a complex vector space H .
The character of that representation is the map12

χ : G → C : f �→ χ[ f ] ≡ Tr (T [ f ]) . (3.52)

This definition ensures thatχ[ f ] is independent of the basis ofH used to evaluate
it. As an application, recall that two group elements f and f ′ are conjugate if there
exists an element g ∈ G such that f ′ = g f g−1, and that the conjugacy class of f is

[ f ] ≡ {
g f g−1

∣∣g ∈ G
}
.

Thus, formula (3.52) ensures that characters are class functions in the sense thatχ[ f ]
only depends on the conjugacy class of f , and not on f itself:

χ[ f ] = χ[g f g−1]. (3.53)

Remark The definition (3.52) suggests that characters are functions on G. While
this is true for finite-dimensional representations, it is not true in infinite-dimensional
ones. In fact, characters should not be seen as functions, but rather as distributions
[19]. Similarly to our dealing with Dirac distributions as if they were “delta func-
tions”, we will not take such mathematical subtleties into account.

3.4.2 The Frobenius Formula

Our derivation of the character formula for induced representations is inspired by
[20], although the formula itself appears in many textbooks on group theory; see
e.g. [21].

Theorem The character of the induced representation T = IndGH (S) defined by
(3.32) is given by the Frobenius formula

χ[ f ] = Tr (T [ f ]) =
∫
M

dμ(k) δ(k, f · k)χS [g−1
k f gk] (3.54)

where μ is a quasi-invariant measure on M ∼= G/H , δ is the associated Dirac dis-
tribution, the gk’s are standard boosts, and χS is the character of S.

Proof Let f ∈ G and let T [ f ] be the associated unitary operator (3.32). We work
in the basis of plane wave states (3.43) so that the trace of T [ f ] reads

12The terminology of “characters” is due to Weber and Frobenius, and stems from the fact that
irreducible representations of finite groups are wholly characterized by their character (see e.g. [17,
p.117] or [18, p.783]).
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χ[ f ] = Tr (T [ f ]) =
∫
M

dμ(k)
N∑

�=1

〈
�k,�

∣∣T [ f ] · �k,�
〉

where we “sum over momenta” thanks to the measure μ on M. Now using (3.48)
and the scalar products (3.44), we find

χ[ f ] =
∫
M

dμ(k)
√

ρ f (k)
N∑

�=1

〈ψk,�|S[g−1
f ·k · f · gk]ψ f ·k,�〉 (3.55)

(3.44)=
∫
M

dμ(k)
√

ρ f (k) δ(k, f · k)
N∑

�=1

(
S[g−1

f ·k · f · gk]
)

��
.

Here the delta function δ(k, f · k) allows us to trade f · k for k. In particular the
Radon–Nikodym derivative ρ f (k) = dμ( f · k)/dμ(k) reduces to unity. One then
recognizes the sum

∑N
�=1 (S[· · · ])�� ≡ χS [· · · ] as the character of S, and Eq. (3.54)

follows. �

The Frobenius formula (3.54) embodies the geometrization of representation the-
ory mentioned at the end of Sect. 3.3.4: the trace of an operator has now become an
integral over a (subset of a) homogeneous space. That integral can be interpreted as
a sum of characters of S. Before studying this formula further, we need to check that
it satisfies the basic properties of a character.

First, since it is the character of an induced representation and since the latter is
independent (up to unitary equivalence) of the choice of the measure μ, the same
should be true of expression (3.54). To see that this is indeed the case, recall that the
combination dμ(k)δ(k, ·) is invariant under changes of measures (as follows from
the definition (3.39) of the Dirac distribution), which then implies invariance of the
character. Note in particular that the Radon–Nikodym derivative of the measure μ
does not appear in (3.54). Secondly, induced representations are independent of the
choice of standard boosts gq ; using the fact that the character of S is a class function,
one readily verifies that (3.54) is also independent of that choice. Finally, recall from
(3.53) that characters are class functions; using (3.20) one verifies that this is indeed
the case with formula (3.54). Note one crucial implication of this fact: because of the
term χS [g−1

k f gk] in (3.54), the character χ[ f ] vanishes if f is not conjugate to an
element of H . In other words the character of the induced representation IndGH (S) is
supported on the points of G whose conjugacy class intersects H .

Remark Since the character χS of the spin representation is a class function, one
is naively tempted to pull the term χS [g−1

k f gk] out of the integral (3.54), as the
notation suggests that f is conjugate to g−1

k f gk . This is not true, because for generic
g, g′ ∈ G one has χS [g−1 f g] �= χS [g′−1 f g′]. As a consequence, the integral (3.54)
is generally non-trivial.
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Fig. 3.2 A manifold M
acted upon by a rotation
around some axis. The points
that belong to the axis are the
only ones left fixed by the
rotation, and are therefore the
only ones that contribute to
the integral of formula (3.54)

3.4.3 Characters and Fixed Points

Formula (3.54) is one of the key results of this chapter. Its two most salient features
are (i) the fact that the character of T is completely specified by that of S and the
spaceM, and (ii) the fact that it is an integral over the points ofM that are left fixed
by f . At first sight the latter observation is a surprise: there is no obvious reason
why a sum over all states of the induced representation would collapse to an integral
over fixed points of f , though in practice this is due to the scalar products 〈�k |� f ·k〉
in the trace (3.55). This collapse is an instance of localization: an integral localizes
to a small subset of points in M (Fig. 3.2), so that the evaluation of (3.54) becomes
child’s play. We shall encounter this situation with the BMS3 group in Sect. 10.3.

Remark The relation between characters of group representations and fixed point
theorems ismuch deeper andmore general than the superficial description given here.
Indeed one can show [22] (see also [19]) that (3.54) coincides with the Lefschetz
number of T [ f ] when the latter is seen as an endomorphism acting on a space of
E-valued sections on M. In turn, the fact that T [ f ] is derived by (3.32) from a
diffeomorphism action of f on M turns out to imply that its Lefschetz number is
given by the Atiyah–Bott fixed point theorem [23].

3.5 Systems of Imprimitivity*

This technical section is for advanced reading: other than for a key corollary that
implies the exhaustivity of induced representations for semi-direct products, it is
inconsequential to the remainder of the thesis and may be skipped in a first reading.

We saw in Eq. (3.46) that the identity operator I can be written as an integral of
projectors �k 〈�k |·〉 = |�k〉〈�k |. This leads to a seemingly random idea: why not
combine these projectors intomore general operators? For example, ifU is any Borel
subset of M, we can associate with it a projection operator

http://dx.doi.org/10.1007/978-3-319-61878-4_10
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PU ≡
∫
U
dμ(k)

N∑
�=1

〈�k,�|·〉�k,� . (3.56)

In that language the identity operator is I = PM. As it turns out this idea is one of
the key properties of induced representations, and sparked the whole development of
the theory by Mackey in the fifties [24–26]. In particular it leads to the imprimitivity
theorem, which roughly states that any representation that admits a suitable family of
projectors (3.56) is necessarily induced. An important corollary of that result is the
fact that all irreducible unitary representations of semi-direct products are induced.

The plan of this section is the following. We first define the notion of systems of
imprimitivity as suitable families of projection operators, and show that any induced
representation admits such a family. We then state (without proof) the imprimitivity
theorem, which we eventually use to define a restricted notion of equivalence for
induced representations. The presentation is based on [1, 2], but our approach will
be heuristic at times; we refer to [27, 28] for a mathematically rigorous presentation.

3.5.1 Projections and Imprimitivity

Herewedescribe the operators (3.56) in the frameworkof projection-valuedmeasures
and show that they form a system of imprimitivity.

Projection-Valued Measures

Let us put (3.56) in a more general context. Observe that, given the Borel set U , the
projector PU acts on wavefunctions by setting them to zero everywhere outside of
U :

(
PU · �

)
(q) =

{
�(q) if q ∈ U,

0 otherwise.
(3.57)

The construction of such projectors motivates the following definition:

Definition Let M be a manifold, H a Hilbert space, End(H ) the space of linear
operators in H . Then a projection-valued measure on M with respect to H is a
map

P : {Borel subsets of M} → End(H ) : U �→ PU (3.58)

satisfying the following properties:

• PM is the identity operator I inH .
• For any pair of Borel sets U and V , we have PU∩V = PU PV ; in particular each

PU is a projector.
• The map P is σ-additive in the sense that, if U1, U2, etc. are disjoint Borel sets,
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PU1∪U2∪··· = PU1 + PU2 + · · · . (3.59)

The terminology here is inspired by measure theory: the map (3.58) is an operator
analogue of (3.1) and property (3.59) corresponds to (3.2). Thus a projection-valued
measure measures the “size” of a subset U not by a real number μ(U ), but by the
rank of a projector PU .

It is easy to verify that the projectors (3.56) define a projection-valued measure on
M with respect to H . One can build such a family for any induced representation.
In terms of plane waves (3.43), this measure infinitesimally reads

dP(k) = dμ(k)
N∑

�=1

�k,�〈�k,�|·〉 = dμ(k)
N∑

�=1

|�k,�〉〈�k,�| ≡ dμ(k)Ik (3.60)

at any k ∈ M. Here we have used both our notation and the standard Dirac one;
we have also introduced an operator Ik = ∑N

�=1 |�k,�〉〈�k,�| such that the identity
operator in H is an integral I = ∫

M dμ(k)Ik . Analogously to (3.3), the operator
PU is the integral of dP over U . For a particle on the real line, for example, the
projection-valued measure in momentum space would read dP = dk |k〉〈k| with
k ∈ R.

Systems of Imprimitivity

There is one property that makes the projection-valued measure (3.56) very special.
Namely, the transitive action of G onM gives rise to an action (3.48) on wavefunc-
tions; the latter, in turn, yields an action on the projectors |�k〉〈�k |. So the fact that
(3.56) acts in the space of a representation provides a relation between the geometry
of M and the action of G on the projection-valued measure, which motivates the
following definition:

Definition Let M be a manifold, G a Lie group acting on M. Let T be a unitary
representation ofG in a Hilbert spaceH . Then a system of imprimitivity for T based
onM is a projection-valued measure P on M with respect toH such that

Pf ·U = T [ f ] ◦ PU ◦ T [ f ]−1 (3.61)

for all f ∈ G and any Borel subset U of M. The system is said to be transitive if
the action of G on M is transitive.

In this language the projectors (3.56) imply that any induced representation has a
transitive system of imprimitivity:

Proposition Let S be a unitary representation of a closed subgroup H of G,
T = IndGH (S) the corresponding induced representation, and M ∼= G/H . Then the
associated projection-valued measure (3.56) is a transitive system of imprimitivity
for T based on M. In the notation (3.60) this is to say that

dP( f · k) = T [ f ] ◦ dP(k) ◦ T [ f ]−1 (3.62)
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for all k ∈ M and any f ∈ G. We shall refer to (3.56) as the canonical system of
imprimitivity of the induced representation T .

Proof Transitivity is obvious, so the only subtlety is proving (3.61). Let us pick a
group element f ∈ G and a Borel set U ⊆ M. We start from the definition (3.56)
and relate T [ f ] ◦ PU ◦ T [ f ]−1 to Pf ·U using formula (3.48) and the fact that T is
unitary:

T [ f ] ◦ PU ◦ T [ f ]−1 =
∫
U
dμ(k)ρ f (k)

N∑
�=1

S[g−1
f ·k f gk]� f ·k,�〈S[g−1

f ·k f gk]� f ·k,�|·〉.

Here the sum over � allows us to cancel the two S[· · · ]’s by unitarity. Using also
dμ(k)ρ f (k) = dμ( f · k) and renaming the integration variable, the right-hand side
boils down to Pf ·U . �

Remark Theword “imprimitive”means “which is not primitive” andwas introduced
by Galois [29] in the context of permutation groups. The action of a group on a set
shuffles the elements of this set, and the action is imprimitive if these permutations
preserve some (non-trivial) partition of the set. In the present case the group G acts
on the Hilbert space H by the induced representations (3.48), and property (3.62)
says that this action preserves the partition ofH into isomorphic subspaces Ek ∼= E
with definite momentum k.

3.5.2 Imprimitivity Theorem

The considerations of the previous pages open the door to a highly non-trivial state-
ment, namely the fact that any representation that admits a transitive system of
imprimitivity is an induced representation:

Imprimitivity theorem Let G be a finite-dimensional Lie group, H a closed sub-
group of G. Let T be a continuous, unitary representation of G in some Hilbert
space H and let P be a system of imprimitivity for T on M = G/H . Then there
exists a unitary representation S of H in some Hilbert space E such that the pair
(T , P) is unitarily equivalent to

(
IndGH (S), PS)

where PS is the canonical sys-
tem of imprimitivity (3.56) associated with IndGH (S). More precisely, there exists an
isometry U : L2(G/H,μ, E) → H , where μ is a quasi-invariant measure on G/H ,
that intertwines the representations T and IndGH (S) and that satisfies

U ◦ PS
U ◦ U−1 = PU (3.63)

for any Borel set U ⊆ M.
The complete proof of this theorem can be found in [30] and is reproduced in [1].

Given the representation T and the system of imprimitivity P , the key subtlety is to
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construct a Hilbert space E and a representation S of H in E . We will not dwell on
this proof any further, but turn now to some of its applications.

Equivalent Induced Representations

Here we describe a restricted notion of equivalence for induced representations,
culminating with the observation that two induced representations T1, T2 are “equiv-
alent” if and only if they are induced from equivalent representations S1,S2. The
proofs rely crucially on the imprimitivity theorem, but we omit them; they can be
found in [1].

DefinitionLetT1 andT2 be two representations ofG induced by some representations
S1,S2 (respectively) of a subgroup H . Let their respective carrier spaces beH1,H2,
and let P1, P2 (respectively) be their canonical systems of imprimitivity. Then a linear
map A : H1 → H2 intertwines the pairs (T1, P1) and (T2, P2) if

A ◦ T1[ f ] = T2[ f ] ◦ A and A ◦ (P1)U = (P2)U ◦ A (3.64)

for any f ∈ G and any Borel set U in G/H .

Equivalence theorem Let S1 and S2 be unitary representations of H in the Hilbert
spaces E1 and E2 (respectively). Let T1 and T2 be the corresponding induced rep-
resentations, and P1, P2 the associated canonical systems of imprimitivity. Then
there exists a (continuous) vector space isomorphism between the space of operators
intertwining S1 and S2 and the space of intertwiners between (T1, P1) and (T2, P2).

As a corollary, the space of intertwiners between (T1, P1) and (T2, P2) contains
an isometry if and only if the space of intertwiners between S1 and S2 does. In other
words, if we declare that the pairs (T1, P1) and (T2, P2) are equivalent once there
exists an isometry A satisfying (3.64), then we have

(T1, P1) ∼ (T2, P2) if and only if S1 ∼ S2. (3.65)

In particular, if S1 and S2 are equivalent (in the usual sense), then so are the induced
representations T1 and T2 (regardless of their systems of imprimitivity). The converse
is not true, since the “if and only if” of (3.65) also involves the systems of imprimitiv-
ity associated with T1 and T2. In other words, saying that two induced representations
are equivalent without saying anything about their systems of imprimitivity is not
sufficient to conclude that they are induced from the same spin representation S.

As mentioned below Eq. (3.38), irreducibility of S does not generally imply irre-
ducibility of the corresponding induced representation. In the next chapter we shall
state a stronger result for semi-direct products, but for now we display a theorem that
provides a slightly weaker criterion for the irreducibility of induced representations.

Definition Let T be an induced representation, P the associated canonical system
of imprimitivity. We call the pair (T , P) irreducible if the space of operators inter-
twining it with itself consists of multiples of the identity.

Irreducibility theorem Let T be induced by S and let P be its system of imprimi-
tivity. Then the pair (T , P) is irreducible if and only if S is irreducible.
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The latter theorem shows that a suitable notion of irreducibility is preserved along
the induction process, since an irreducible S will lead to an induced representation
T and a system of imprimitivity P which, together, will be considered irreducible
in the above sense. But the theorem does not say that an induced representation T
on its own is irreducible if it is induced from an irreducible S.
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Chapter 4
Semi-direct Products

In this chapter we introduce semi-direct products such as the Poincaré group, the
Galilei group and the Bargmann group. We describe their irreducible unitary rep-
resentations, which are induced from representations of their translation subgroup
combinedwith a so-called little group.We interpret these representations as particles
propagating in space-time and having definite transformation properties under the
corresponding symmetry group. This picture will be instrumental in our study of the
BMS3 group.

The plan is as follows. In Sect. 4.1 we define semi-direct products and introduce
the key notions of momentum orbits, little groups and particles. We also explain why
irreducible unitary representations are always induced, and describe these represen-
tations in general terms. The remaining sections are devoted to applications of these
considerations. In Sect. 4.2 we describe relativistic particles, i.e. unitary represen-
tations of the Poincaré group, with a particular emphasis in Sect. 4.3 on the three-
dimensional setting (which will be useful when dealing with BMS3). Section4.4 is
devoted to non-relativistic particles, i.e. unitary representations of Bargmann groups.
Useful references include [1, 2] for the general theory, and [3–5] for its application
to Poincaré.

4.1 Representations and Particles

In short, a semi-direct product group consists of two pieces: a non-Abelian group
G of transformations that can be interpreted as “rotations” or “boosts”, and another
group A that consists of transformations analogous to translations that are acted
upon by rotations and boosts. This structure is denoted G � A and is common to
the Poincaré groups (1.2) as well as the BMS groups (1.1)–(1.9). In this section we
define such groups in abstract terms, define the associated notion of “momenta” and
describe their irreducible unitary representations, which we interpret as particles.
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4.1.1 Semi-direct Products

Definition Let G and A be Lie groups; we denote elements of G as f , g, etc. and
those of A as α, β, etc. Let σ : G × A → A : ( f,α) �→ σ f (α) be a smooth action
of G on A where each σ f is an automorphism of A. Then the semi-direct product of
G and A with respect to σ is the group denoted

G �σ A or G � A (4.1)

whose elements are pairs ( f,α) where f ∈ G and α ∈ A, with a group operation

( f,α) · (g,β) = (
f · g,α · σ f (β)

)
. (4.2)

This definition implies for instance that the inverse of ( f,α) is

( f,α)−1 = (
f −1, [σ f −1(α)]−1

)
. (4.3)

It follows that A is a normal subgroup of G � A: identifying A with the set of
elements (e,α) ∈ G � A (where e is the identity in G), one finds

(g,β) · (e,α) · (g,β)−1 (4.2)= (
e,β · σg(α) · β−1

) ∈ A. (4.4)

It is equally easy to verify that G is a subgroup of G � A, though it is generally not a
normal subgroup. Indeed, upon identifying G with the subgroup of G � A consisting
of elements ( f, eA) (where eA is the identity in A), we find

(g,β) · ( f, eA) · (g,β)−1 (4.2)= (
g f g−1,β · σg f g−1(β−1)

)
. (4.5)

For this to be an element ofG, wemust require thatβ · σg f g−1(β−1) coincideswith eA,
which is the statement that σ f (α) = α for any α ∈ A. Thus G is a normal subgroup
of A if and only if its action σ is trivial, in which case G � A is isomorphic to the
direct product G × A. From now on we always take the action σ to be non-trivial.

Rotations and Translations

A case of great interest, both for the general theory and for our specific purposes,
occurs when A is a vector group. By this we mean a vector space endowed with
the Abelian group operation given by the addition of vectors: α · β ≡ α + β. In that
case the identity in A is the vanishing vector eA = 0.

Definition Let G be a Lie group, A a vector space, σ a representation of G in A,
and consider the semi-direct product G �σ A whose elements are pairs ( f,α) with
group operation

( f,α) · (g,β) = (
f · g,α + σ f (β)

)
. (4.6)
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Elements ofG are then called rotationsorboostswhile elements of A are translations.

Note that, since A is a vector group, the inverse (4.3) of ( f,α) is ( f,α)−1 =(
f −1,−σ f −1(α)

)
. Relation (4.4) also simplifies to (g,β) · (e,α) · (g,β)−1 =

(e,σgα). From now on the words “semi-direct product” and the notation G � A
will always refer to a group (4.1) with A a vector group. (This is why the second
factor in (4.1) was denoted “A” in the first place.)

The terminology of “rotations” and “translations” is justified by the semi-direct
products commonly encountered in physics:

• The Euclidean group in n space dimensions takes the form (4.1) where rotations
span the group G = O(n) while translations belong to A = R

n , with the action σ
of rotations on translations given by the vector representation of O(n).

• The Poincaré group in D space-time dimensions takes the form (4.1) where rota-
tions and boosts span the Lorentz groupO(D − 1, 1)while space-time translations
span A = R

D (which is sometimes written R
D−1,1); the action σ is the vector rep-

resentation of the Lorentz group.
• The BMS groups (1.1)–(1.9) all take the form (4.1) with G a specific non-Abelian
group and A an Abelian vector group of so-called “supertranslations”. A similar
structure will hold in three space-time dimensions.

Note that the definition of G � A singles out the normal subgroup A, so G and
A live on unequal footings. In particular the Lie algebra of G � A contains a non-
trivial Abelian ideal and is not semi-simple. This implies that, in contrast to simple
Lie groups, the representations of G � A must somehow distinguish the roles of G
and A by making them act on the carrier space in radically different ways. We will
illustrate this in the pages that follow (see e.g. formula (4.23)).

4.1.2 Momenta

Suppose we wish to build unitary representations of a semi-direct product G �σ A.
Where should we start? A simple approach is to note that the restriction to A of
any unitary representation of G � A is a (reducible) unitary representation of A. So
instead of directly looking for representations of G � A, let us consider the simpler
problem of building unitary representations of the group of translations, A.

We denote by A∗ the vector space dual to A. It consists of linear forms p : A →
R : α �→ 〈p,α〉, which motivates the definition of a bilinear pairing

〈·, ·〉 : A∗ × A → R : (p,α) �→ 〈p,α〉. (4.7)

Since A is Abelian, any one of its irreducible unitary representations is one-
dimensional and takes the form

R : A → C : α �→ ei〈p,α〉 (4.8)

http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_1
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for some fixed element p of A∗. Indeed, any representation R of A is such that

R[α + β] = R[α]R[β] (4.9)

where the right-hand side is a composition of linear operators. Assuming that A has
a countable basis so that α and β have components αi , βi , the derivative of (4.9) with
respect to βi yields

∂ jR[α] = i
(− i∂ jR[0])R[α] (4.10)

where each (−i∂ jR[0]) is Hermitian by unitarity. Hence R[α] = exp[i(−i∂ j

R[0])α j ], which can be diagonalized into a direct sum of multiplicative operators
(4.8).

For example, for the Euclidean group in n dimensions, α = (α1, . . . ,αn) is an
n-component vector and 〈p,α〉 = piα

i where p = (p1, . . . , pn) is a “covector”. For
the Poincaré group in D space-time dimensions, α = (α0, . . . ,αD−1) is a D-vector
and 〈p,α〉 = pμα

μ for some energy-momentum covector (p0, . . . , pD−1). When
interpreting the corresponding unitary representations as “particles”, the quantity
p represents the particle’s momentum vector.1 Accordingly, from now on the dual
space A∗ will be called the space of momenta, and its elements will be denoted as
p, q or k. In the BMS3 groups, translations and momenta are vectors with infinitely
many components. Note that two irreducible representations of the form (4.8) are
equivalent if and only if their momenta coincide.

Remark In proving that all irreducible unitary representations of A takes the form
(4.8), we relied crucially on Eq. (4.9). The latter assumes that R is an exact repre-
sentation of A, which is not a restrictive assumption as long as there exists no central
extension of G � A that turns A into a non-Abelian group. The Poincaré groups, the
Bargmann groups and the BMS3 group all satisfy this property, so one may safely
assume that A is Abelian even upon switching on central extensions. By contrast,
the symmetry group of warped conformal field theories [6] is a semi-direct product
whose central extension makes translations non-Abelian [7].

4.1.3 Orbits and Little Groups

We now ask how irreducible, unitary representations of the Abelian group A are
embedded in unitary representations of the larger group G �σ A. Let T be a unitary
representation of the latter; then its restriction to A is, in general, reducible. It is
typically a direct sum, or rather a direct integral, of irreducible representations (4.8)2:

1More precisely the momentum vector is obtained by raising the indices of the covector p thanks
to some metric on A left invariant by G, but we will keep referring to p as the “momentum vector”.
2Our notation here is not mathematically precise; we refer to [2] for a more rigorous treatment.
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T [(e,α)] =
∫

O
dμ(q) ei〈q,α〉

Iq ∀α ∈ A. (4.11)

HereO is a certain subset of A∗, μ is some measure onO, and each Iq is an identity
operator acting in a suitable Hilbert space at momentum q. The question then is:

What is the minimal setO of momenta
appearing in the decomposition (4.11)?

(4.12)

The answer will lead to the notion of orbits; hence the notation “O” in (4.11).
CallH the Hilbert space of the representation T . Suppose there exists a subspace

E of H where translations are represented by multiplicative operators (4.8) with a
certain momentum p:

T [(e,α)]
∣∣∣
E

= ei〈p,α〉
IE ∀α ∈ A, (4.13)

where IE is the identity operator in E . We shall refer to this property by saying that
the representation T “contains the momentum p”. Now pick some group element
f ∈ G. By virtue (4.6) and since T is a representation, one has

T [(e,α)] · T [( f, 0)] = T [( f, 0)] · T [(e,σ f −1α)]. (4.14)

One can then act with both sides of this equation on the space E ; the last term on
the right-hand side produces a multiplicative operator (4.13) with α replaced by
σ f −1α. This operator is a c-number and therefore commutes with T [( f, 0)]. We
conclude that, on the space T [( f, 0)] · E ≡ E ′, all translations are again represented
by multiplicative operators, but now with an additional insertion of σ f −1 in the phase
〈p,α〉:

T [(e,α)]
∣∣∣
E ′

= ei〈p,σ f −1α〉
IE ′ ∀α ∈ A. (4.15)

This motivates the following definition for the action of boosts on momenta:

Definition For any momentum p ∈ A∗ and any f ∈ G, we write

σ∗
f (p) ≡ p ◦ σ f −1 , (4.16)

i.e. 〈σ∗
f (p),α〉 ≡ 〈p,σ f −1α〉 for all translations α. This defines a representation σ∗

of G in the space of momenta, known as the dual representation corresponding to
σ. To reduce clutter, we will often denote it by

σ∗
f (p) ≡ f · p . (4.17)

In terms of the dual representation (4.17) we can rewrite (4.15) as T [(e,α)]∣∣E ′ =
ei〈 f ·p,α〉

IE ′ , where E ′ = T [( f, 0)] · E . Thus, whenever the representation T contains
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amomentum p, compatibilitywith the structure ofG � A implies that it also contains
the boosted momentum f · p, where f is any element of G. This is the answer to
the question (4.12): if there exists a momentum p such that (4.13) holds, then the
representation also contains all momenta that belong to the orbit (3.13) of p under
G,

Op ≡ { f · p | f ∈ G} . (4.18)

This orbit is the minimal set of momenta needed to cook up a representation of
G � A; we will see below that it is also sufficient. In fact, the whole classification
of irreducible unitary representations of G � A will be provided by a partition of
the space of momenta into G-orbits. Note that this partition is scale-invariant in the
following sense: since the action of boosts on momenta is linear, the orbits Op and
Oλp are diffeomorphic for any real number λ �= 0.

Each orbit Op is a homogeneous space for the action (4.16) of G. Accordingly
we define the little group of a momentum p as the set of rotations that leave it fixed,

G p ≡ { f ∈ G | f · p = p} . (4.19)

It is the stabilizer (3.14) for the action of G on the homogeneous space Op. As
in (3.15) there is a diffeomorphism Op

∼= G/G p. Note that the little group of the
vanishing momentum p = 0 is the whole group G.

The notion of orbits is perhaps the one most important concept needed to under-
stand representations of semi-direct products. We will encounter it repeatedly later
on. Orbits hint at a geometrization of representation theory analogous to the onemen-
tioned at the end of Sect. 3.3, and therefore suggest that representations of G � A
are closely related to induced representations. In the next pages we will confirm this
intuition by showing how to associate representations of G � A with a given orbit.

Note that the action (4.16) of G on the space of momenta leaves the pairing (4.7)
invariant in the sense that 〈 f · p,σ f α〉 = 〈p,α〉. This has an important implication:
when A is finite-dimensional it is isomorphic to its dual, so (4.7) defines a non-
degenerate bilinear form on A and the action σ∗ of G on momenta is equivalent
to σ. We shall see illustrations of this in the Poincaré groups. By contrast, when
A is infinite-dimensional, σ∗ may not be equivalent to σ despite the property 〈 f ·
p,σ f α〉 = 〈p,α〉. This observation will be relevant to the BMS3 group in part III.

4.1.4 Particles

We now explain how to build irreducible unitary representations of G � A starting
from a momentum orbitOp. Inspired by the Poincaré group, we refer to such repre-
sentations as particles. We start by describing scalar particles and identify them with
induced representations of G � A. This identification will then allow us to introduce
spin.

http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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Scalar Particles

Let p ∈ A∗ be a momentum with orbit (4.18). The latter is a homogeneous space
and therefore admits a quasi-invariant measure μ. Let then H = L2(Op,μ, C) be
the Hilbert space of square-integrable wavefunctions in momentum space,

� : Op → C : q �→ �(q). (4.20)

The scalar product of wavefunctions is (3.7), with (�(q)|�(q)) = �∗(q)�(q).
Now let us endowH with a unitary action T of G � A. In other words, if� ∈ H

is a wavefunction, we wish to define the object

T [( f,α)] · � (4.21)

where ( f,α) belongs to G � A and where T [( f,α)] is some unitary operator. Lin-
earity implies that the result should be proportional to �, so

(
T [( f,α)] · �

)
(q) = (some number) × �(some point on Op)

where the unknown quantities may depend on q, f and α. Note that the quantity
multiplying �(· · · ) on the right-hand side must be a number, as opposed to an oper-
ator, because � takes its values in C (this will change upon adding spin). Now recall
that the reason for introducing orbits in the first place was to represent translations by
multiplicative operators (4.8). Accordingly the translationα in (4.21) should produce
a momentum-dependent phase factor:

(
T [( f,α)] · �

)
(q) = ei〈q,α〉 × �(some point on Op) .

Finally, since � is a wavefunction in momentum space, its argument on the right-
hand side should represent the fact that a boost f maps a particle with momentum k
on a particle with momentum f · k. This is exactly the situation encountered in the
quasi-regular representation (3.22) so we can borrow that construction:

(
T [( f,α)] · �

)
(q) = ei〈q,α〉 �( f −1 · q) . (4.22)

In particular, the intuition depicted in Fig. 3.1 remains valid.
Formula (4.22) defines a representation T of G � A, as can be verified by follow-

ing the same steps as for the quasi-regular representation (3.22). It is also irreducible
by virtue of the fact that the orbit Op is a homogeneous space. Finally, it is uni-
tary if the measure μ in (3.7) is invariant under G. If the measure has a non-trivial
Radon-Nikodym derivative (3.19), the representation (4.22) can be made unitary by
inserting a compensating term in front of the exponential, as in (3.24):

(
T [( f,α)] · �

)
(q) =

√
ρ f −1(q) ei〈q,α〉 �( f −1 · q). (4.23)

http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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We call this representation a scalar particle with momentum orbit Op. Note how
translations and rotations have radically different roles: translations multiply wave-
functions by momentum-dependent phase factors, while boosts move them around
on the orbit by changing their argument. In particular, pure translations act as

T [(e,α)] · �(q) = ei〈q,α〉 �(q). (4.24)

Thinking of wavefunctions as sections of a complex line bundle overOp with fibres
Eq

∼= C, formula (4.24) can be rewritten symbolically as

T [(e,α)] =
∫

Op

dμ(q) ei〈q,α〉
Iq (4.25)

where Iq is the identity operator in the fibre at q. This is precisely the anticipated
expression (4.11) (Fig. 4.1).

Particles Are Induced Representations

Formula (4.23) is almost identical to the quasi-regular representation (3.24), and
more generally to the induced representation (3.32). To investigate this relation, let
G p be the little group (4.19) of p and consider the subgroup G p � A of G � A.
Define a map

S : G p � A → C : ( f,α) �→ S[( f,α)] ≡ ei〈p,α〉, (4.26)

Fig. 4.1 Amomentum orbitOp crossed by one-dimensional fibres isomorphic toC. (For simplicity
the fibres are depicted as if they were real rather than complex.) The fibre at q ∈ Op is denoted Eq
and the disjoint union of such fibres is a (complex) line bundle over Op . A wavefunction � is a
section of that bundle. Translations (4.25) act by complex multiplication z �→ ei〈q,α〉z in each fibre
Eq

http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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which is a one-dimensional representation of G p � A. Indeed, for all ( f,α) and
(g,β) belonging to G p � A, S preserves the group structure in the sense that

S[( f,α)] · S[(g,β)] (4.26)= ei〈p,α〉+i〈p,β〉 f ∈G p= ei〈p,α〉+i〈 f −1·p,β〉
(4.16)= ei〈p,(α+σ f β)〉 (4.26)= S[( f g, α + σ f β)] (4.6)= S[( f,α) · (g,β)].

Furthermore, (4.26) is unitary so we can use it to induce a unitary representation

T = IndG�A
G p�A(S) (4.27)

ofG � A. Using the general formula (3.32) and the diffeomorphismsOp
∼= G/G p

∼=
(G � A)/(G p � A), we see that the induced representation (4.27) acts on wavefunc-
tions exactly in the way displayed in Eq. (4.23). Note that the little group G p is
represented trivially in the “spin” representation (4.26). This is why we say that the
particle (4.23) is scalar: its states are essentially unaffected by the rotations that span
G p. The picture (4.27) suggests a simple generalization of this behaviour, as we now
explain.

Spinning Particles

To generalize (4.23), let R be an irreducible, unitary representation of G p in some
space E and consider the spin representation

S : G p � A → GL(E) : ( f,α) �→ ei〈p,α〉 R[ f ] . (4.28)

This reduces to (4.26)whenR is trivial, and the corresponding induced representation
of G � A is

T = IndG�A
G p�A(S) = IndG�A

G p�A

(
ei〈p,·〉 R

)
. (4.29)

Its action on wavefunctions is analogous to (3.32) and generalizes (4.23):

(T [( f,α)] · �) (q) =
√

ρ f −1(q) ei〈q,α〉 R[g−1
q f g f −1·q ] · �( f −1 · q) , (4.30)

where the map g : Op → G : q �→ gq is a continuous family of standard boosts
(3.31). In contrast to (4.23), � now takes its values in E rather than C.

We call the representation (4.30) a spinning particle with spin R and momenta
belonging to Op. It is an irreducible unitary representation of G � A acting on the
Hilbert space H = L2(Op,μ, E). The operator

R[g−1
q f g f −1·q ] ≡ Wq [ f ] (4.31)

is the Wigner rotation (3.35) associated with f and q. It is the transformation that
corresponds to f in the space of internal degrees of freedom E at q and it entangles

http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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momentum and spin degrees of freedom. The decomposition (4.25) still holds in the
spinning case, with Iq the identity operator in the fibre Eq

∼= E at q.
From this point on, the whole machinery of induced representations applies to

unitary representations (4.30) of G � A. In particular they are independent of the
choice of the quasi-invariant measure μ and of the family of standard boosts gq .
The plane waves (3.43) provide a basis of the Hilbert space and represent one-
particle states with definite momentum and definite spin. They transform under G �

A according to

T [( f,α)] · �k,� = √
ρ f (k) ei〈 f ·k,α〉R

[
g−1

f ·k · f · gk

]
· � f ·k,� . (4.32)

This is just formula (3.48) applied to (4.29); it is the plane wave analogue of (4.30).
Using this, one can go on and evaluate characters along the lines that led to the
Frobenius formula (3.54). One finds

χ[( f,α)] = Tr
(
T [( f,α)]) =

∫

Op

dμ(k) δ(k, f · k) ei〈k,α〉χR[g−1
k f gk] , (4.33)

where χR is the character of the representation R of G p. As before one can check
that this formula defines a class function and that χ[( f,α)] vanishes when f is not
conjugate to an element of the little group. The delta function localizes the integral
to the momenta that are left fixed by the action of f on Op.

4.1.5 Exhaustivity Theorem

Equation (4.30) is an irreducible unitary representations of G � A. As it turns out, all
irreducible representations of G � A take this form for some momentum orbit Op

and some spin R. We refer to this property as the exhaustivity theorem for induced
representations.

This theorem has enormous practical value: it provides the classification of all
irreducible unitary representations of a semi-direct product G �σ A when A is a
vector group. This classification can be performed thanks to the following algorithm:

1. Consider the space of momenta, A∗. For each p ∈ A∗, determine the orbit Op

given by (4.18). This foliates A∗ into disjoint momentum orbits, and each point
of A∗ belongs to exactly one orbit.

2. Wecall set of orbit representatives a set ofmomenta that exhaust all orbits in a non-
redundant way, in the sense that (i) each orbit contains one of the representatives,
and (ii) different representatives belong to different orbits. Find a set of orbit
representatives, compute the little group of each representative, and find standard
boosts connecting each representative to the points of its orbit.

http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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3. For each representative p with little group G p, classify all irreducible unitary
representations of G p. Given such a representation R, the associated induced
representation of G � A is (4.30).

We will illustrate this classification for the Poincaré groups in Sect. 4.2 and for the
Bargmann groups in Sect. 4.4, and of course for BMS3 in Chap.10.

The proof of the exhaustivity theorem is essentially an upgraded version of our
arguments in Sect. 4.1.3 and relies on two crucial ingredients: the first is the commu-
tativity of the vector group A, and the second is the imprimitivity theoremof Sect. 3.5.
Thanks to commutativity, any unitary representation of A can be written as a direct
integral (4.11) of irreducible representations specified by certain momenta q ∈ A∗.
(This is known as the snag theorem.) This implies that any unitary representation
T of G � A is imprimitive. Indeed, relation (4.14) can be rewritten as

T [( f, 0)] · T [(e,α)] · T [( f, 0)]−1 = T [(e,σ f α)]

whereupon the direct integral representation (4.11) yields

T [( f, 0)] · dμ(q)Iq · T [( f, 0)]−1 = dμ( f · q)I f ·q , (4.34)

which is precisely the statement (3.62) that the projection-valued measure dμ(q)Iq

is a system of imprimitivity for T on A∗. The imprimitivity theorem then implies
that the representation T is induced. The last step of the proof consists in showing
that, if T is irreducible, then the measure μ in (4.34) localizes to a single momentum
orbit. We refer to [2] for details.

Remark The exhaustivity theorem relies on an extra technical assumption that we
haven’t mentioned so far. Namely, one says that G � A is regular if the space of
momenta A∗ and the action (4.16) of G are such that A∗ contains a countable family
of Borel sets, each a union of momentum orbits, such that each orbit is the limit of
a decreasing sequence of such sets. As it turns out regularity is necessary for the
measure μ in (4.34) to be localized on a momentum orbit. All semi-direct products
treated in part I of this thesis are regular. As for the BMS3 group of part III, the issue
of regularity will be discussed briefly in Sect. 10.1.

4.2 Poincaré Particles

In this section and the next ones we study examples of semi-direct products to
illustrate induced representations. Here we deal with the Poincaré group — the
isometry group of Minkowski space — whose representations describe relativistic
particles. Following the algorithm of page XXXX we will find that these particles
are classified by two parameters: their mass and their spin. In view of treating the
BMS3 group in part III, we relegate the detailed description of relativistic particles
in three dimensions to Sect. 4.3.

http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_10
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The plan is the following. First we define the Poincaré group as a semi-direct
product of the Lorentz group with the group of space-time translations. Then we
turn to the classification of its momentum orbits and describe the corresponding
particles.We also compute their characters and end with the observation that Lorentz
transformations generally entangle momentum and spin degrees of freedom.

The classification of relativistic particles was first performed by Wigner [8], and
their relation to wave equations was worked out in [9]. These results are among the
foundations of quantum mechanics and field theory; see e.g. [2–5].

4.2.1 Poincaré Groups

Lorentz Transformations

We consider the vector space R
D; its elements are column vectors α, β, etc. with

components αμ, βμ where μ = 0, 1, . . . , D − 1. Here R
D is to be interpreted as a

space-time manifold with dimension D ≥ 2. We endow R
D with a non-degenerate

bilinear form given by the Minkowski metric,

(α,β) ≡ ημνα
μβν, (ημν) =

⎛

⎜
⎜⎜⎜⎜
⎝

−1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞

⎟
⎟⎟⎟⎟
⎠

. (4.35)

We write (α,α) ≡ α2 for any α. The sign of α2 determines whether α is time-like,
null or space-like, corresponding respectively to α2 < 0, α2 = 0 or α2 > 0.

Definition The Lorentz group O(D − 1, 1) in D dimensions is the group of linear
transformations R

D → R
D : α �→ f · α that preserve (4.35) in the sense that

( f · α, f · β) = (α,β). (4.36)

It consists of D × D matrices f = ( f μ
ν) such that

f t · η · f = η, i.e. f λ
μηλρ f ρ

ν = ημν (4.37)

where the dot denotes matrix multiplication. In particular, the Minkowskian norm is
left invariant by Lorentz transformations.

Topology of Lorentz Groups

The Lorentz group O(D − 1, 1) is disconnected. Indeed, any Lorentz matrix f has
determinant det( f ) = ±1. This cuts the group in two pieces consisting of matri-
ces with positive and negative determinant, corresponding to transformations that
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Fig. 4.2 The four connected components of the Lorentz group. The upper left component is the
proper orthochronous Lorentz group SO(D − 1, 1)↑. It can be mapped on the other components
using parity and time reversal. In particular the proper Lorentz group is generated by SO(D − 1, 1)↑
together with time reversal, while the orthochronous Lorentz group is generated by SO(D − 1, 1)↑
together with parity

preserve or break (respectively) the orientation of the spatial coordinates. The sub-
group of O(D − 1, 1) consisting of Lorentz matrices with positive determinant is the
proper Lorentz group, SO(D − 1, 1). Any improper Lorentz matrix is the product
of a proper Lorentz transformation with parity. In addition, one can show that any
Lorentz matrix f satisfies | f 00| ≥ 1, which again cuts the Lorentz group in two
pieces: matrices with positive or negative f 00, corresponding to transformations that
preserve or invert (respectively) the orientation of the arrow of time. The subgroup
consisting of Lorentz transformations with positive f 00 is the orthochronousLorentz
group O(D − 1, 1)↑. Any Lorentz matrix that reverts the arrow of time is the product
of an orthochronous Lorentz matrix with time reversal. The situation is depicted in
Fig. 4.2.

In this section we focus on the connected Lorentz group, i.e. the proper orthochro-
nous Lorentz group SO(D − 1, 1)↑. The latter satisfies an important property known
as standard decomposition: any proper, orthochronous Lorentz transformation is a
product f = R1 · � · R2, where R1 and R2 are spatial rotations and� is a pure boost
[10]. In what followswe often refer to SO(D − 1, 1)↑ simply as “the Lorentz group”.

The Lorentz group is not simply connected: in space-time dimension D ≥ 4, its
fundamental group is isomorphic toZ2. The universal cover of the connected Lorentz
group is then called the spin group, so that

SO(D − 1, 1)↑ ∼= Spin(D − 1, 1)/Z2 (4.38)

where theZ2 subgroup of Spin(D − 1, 1) consists of the identitymatrix and its oppo-
site. In four dimensions, Spin(3, 1) = SL(2, C). In D = 3 dimensions the situation
is a bit different; we will return to it in the next section. In any case the Lorentz group
is always multiply connected, and therefore admits topological projective represen-
tations; this will be important for representations of Poincaré.
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Poincaré Groups

Definition The Poincaré group or inhomogeneous Lorentz group in D space-time
dimensions is the semi-direct product

IO(D − 1, 1) ≡ O(D − 1, 1) � R
D (4.39)

whose elements are pairs ( f,α) where f is a Lorentz transformation, α a space-
time translation. The group operation is ( f,α) · (g,β) = ( f · g,α + f · β) where
the dots on the right-hand side denotematrixmultiplication and the action ofmatrices
on column vectors. The connected Poincaré group is the largest connected subgroup
of (4.39),

ISO(D − 1, 1)↑ ≡ SO(D − 1, 1)↑ � R
D , (4.40)

and its universal cover is
Spin(D − 1, 1)↑ � R

D (4.41)

where spin transformations act on R
D according to the composition of the homo-

morphism given by (4.38) with the vector representation of the Lorentz group.
The Poincaré group turns out to have no algebraic central extensions, so its only

non-trivial projective transformations are of topological origin. The Poincaré Lie
algebra is generated by D(D − 1)/2Lorentz generators and D translation generators;
we will not display their brackets here.

4.2.2 Orbits and Little Groups

From now on we focus on the connected Poincaré group (4.40), to which we refer
simply as “the Poincaré group”.

Momenta and Orbits

The space of Poincaré momenta is (RD)∗ = R
D; its elements are D-dimensional

covectors p = (p0, p1, . . . , pD−1), where p0 is to be interpreted as the energy of
a relativistic particle, while p = (p1, . . . , pD−1) is its spatial momentum.3 Given a
momentum p and a space-time translation α, the pairing (4.7) is 〈p,α〉 = pμα

μ.
TheMinkowski metric (4.35) provides a Lorentz-invariant pairing between trans-

lation vectors and can be used to define an isomorphism

I : R
D → (RD)∗ : α �→ (α, ·) (4.42)

3Strictly speaking the energy of the particle is p0 = −p0, but this detail will not affect our discussion
so we neglect it for simplicity.
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where the components of (α, ·) are those of α lowered with the Minkowski metric.
Using I, one verifies that the action σ∗ of Lorentz transformations on momenta is
equivalent to their action σ on translations:

σ∗
f = I ◦ σ f ◦ I−1. (4.43)

As a consequence, momentum orbits coincide with orbits of translations under
Lorentz transformations, and consist ofmomenta q with constantMinkowskian norm
squared q2. We thus conclude that

the orbits of momenta of relativistic particles are connected hyperboloids
specified by an equation of the form q2

0 − q2 = const. in R
D.

The only exception to this rule is the trivial orbit of the vanishing momentum p = 0,
which contains only one point. The word “connected” appears here because we are
dealing with the connected Poincaré group (4.40). By contrast the momentum orbits
of (4.39) are generally disconnected.

The connectedPoincaré grouphas six distinct families ofmomentumorbits,which
we now describe. Further details can be found e.g. in [4, 5].

• Let p = 0 be the vanishing momentum. Its orbitO0 = {0} contains a single point.
Its little group is the whole Lorentz group.

• Let p be a timelikemomentumwith positive energy, p0 > 0. Its orbitOp ismassive
with positive energy and consists of momenta q satisfying

q2
0 − q2 = M2 > 0, q0 > 0, (4.44)

where we have introduced the mass squared M2 ≡ −p2. We can choose as orbit
representative the rest frame momentum

p = (M, 0, . . . , 0), M > 0. (4.45)

The little group of (4.45) is the group of spatial rotations

G p = SO(D − 1) (4.46)

consisting of proper Lorentz transformations that leave the time coordinate fixed.
In particular, the orbit is diffeomorphic to the quotient

Op
∼= SO(D − 1, 1)↑/SO(D − 1) ∼= R

D−1 (4.47)

and its points can be labelled by the spatial components of momentum (since the
zeroth component is then determined by Eq. (4.44)). Massive orbits with different
masses are disjoint.
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• Let p be a time-like momentum with negative energy, p0 < 0. Its orbit is massive
with negative energy and consists of momenta q satisfying (4.44) with q0 < 0. A
typical orbit representative is (4.45) with M < 0, and orbits with different masses
are disjoint. The little group is a again SO(D − 1).

• Let p be a null momentum with positive energy, p0 > 0. Its orbit Op is massless
with positive energy. It consists of momenta q satisfying (4.44) with M2 = 0. A
typical orbit representative is

p = (E, E, 0, . . . , 0) (4.48)

where the energy E is positive; different values of E yield the same orbit. Note that
there is no rest frame formassless particles. The little group of (4.48) is isomorphic
to the Euclidean group

G p
∼= SO(D − 2) � R

D−2 = ISO(D − 2). (4.49)

In particular, the orbit is diffeomorphic to the quotient

Op
∼= SO(D − 1, 1)↑/ISO(D − 2) ∼= R × SD−2 (4.50)

and its points can be labelled by the spatial components of momentum (since the
zeroth component is then determined by q2 = 0).

• Let p be a null energy-momentum vector with negative energy. Its orbit ismassless
with negative energy and consists of null momenta q with q0 < 0. A typical orbit
representative is (4.48) with negative E . The little group is (4.49) and the orbit can
be represented as a quotient (4.50).

• Let p be a space-like momentum. Its orbit is tachyonic and consists of momenta
q satisfying (4.44) with M2 < 0. A typical orbit representative is

p = (
0, 0, . . . , 0,

√
−M2

)
. (4.51)

The little group is the lower-dimensional Lorentz group SO(D − 2, 1)↑ consisting
of transformations that leave the spatial coordinate x D−1 fixed. In particular the
orbit is diffeomorphic to the quotient

O ∼= SO(D − 1, 1)↑/SO(D − 2, 1)↑ ∼= R × SD−2. (4.52)

Tachyonic orbits with different negative values of M2 are disjoint. Note that rota-
tions always allow us to map p on −p, which is why any tachyonic orbit repre-
sentative can be written as (4.51).

This enumeration exhausts all Poincaré momentum orbits. Among the six fami-
lies of orbits, three contain only one orbit: the trivial orbit and the two massless
orbits. The remaining three families all contain infinitely many orbits labelled by a
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(a) (b)

Fig. 4.3 On the left, a represents a fewmomentum orbits of the Poincaré group in three dimensions,
embedded in R

3 with the vertical axis corresponding to p0 and the two horizontal axes (not rep-
resented in the figure) corresponding to spatial components of momentum. Orbits can be massive,
massless or tachyonic depending on whether M2 is positive, vanishing or negative, respectively.
The cross in the middle is the trivial orbit of p = 0, consisting of a single point. On the right, b is
a schematic representation of momentum orbits: each point of the diagram corresponds to an orbit
representative, where massive orbits are represented by a vertical line, tachyonic ones by a hori-
zontal line, and discrete orbits (the two massless ones and the trivial one) by dots. This schematic
representation will be useful in parts II and III for the interpretation of BMS3 supermomentum
orbits

non-vanishingmass squared, corresponding tomassive particles and tachyons. These
orbits and their representatives are schematically depicted in Fig. 4.3.

To complete the description of orbits we now display standard boosts for massive
particles (the other cases are less important for our purposes so we skip them). We
take as orbit representative the momentum (4.45) of a particle at rest, and look for a
family of boosts gq such that gq · p = (

√
M2 + q2,q) that depend continuously on

q. One readily verifies that the matrices [11]

gq =
(√

1 + q2/M2 q j/M

qi/M δi j + qi q j

q2

(√
1 + q2/M2 − 1

)
)

(4.53)

satisfy these requirements. Here i, j = 1, . . . , D − 1 are spatial indices. Each such
matrix is a boost in the direction q/|q| with rapidity arccosh[√1 + q2/M2].
Remark The little groups displayed in (4.46) and (4.49) hold for the connected
Poincaré group (4.40). If we replace the latter by its universal cover (4.41), then the
little groups are replaced by their double covers (assuming that D ≥ 4). In particular
the little group of massive particles becomes Spin(D − 1) while that of massless
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particles becomes Spin(D − 2) � R
D−2, with the convention that Spin(2) is the

double cover of SO(2). Note that Spin(3) = SU(2).

4.2.3 Particles

According to the exhaustivity theorem of Sect. 4.1.5, themomentum orbits in Fig. 4.3
roughly classify relativistic particles. The states of each particle are wavefunctions
on its momentum orbit, valued in a spin representation of the little group and trans-
forming under Poincaré transformations according to formula (4.30). Provided we
know all irreducible unitary representations of all little groups, we have effectively
classified all irreducible unitary representations of the Poincaré group.

Vacuum

Vacuum representations of Poincaré are those whose orbit O0 = {0} is trivial and
is left invariant by the whole Lorentz group. In that case a spin representation is
a (projective) irreducible unitary representation R of SO(D − 1, 1)↑. The latter is
simple but non-compact, so its only finite-dimensional irreducible unitary transfor-
mation is the trivial one; the corresponding induced representation of Poincaré is
trivial as well. All other irreducible unitary representations of the Lorentz group
are infinite-dimensional; the corresponding induced representations of Poincaré are
such that translations act trivially, while Lorentz transformations act non-trivially
on an infinite-dimensional Hilbert space E of spin-like degrees of freedom. These
representations can be interpreted as “vacua with spin” but are generally discarded
as unphysical.

Massive Particles

The momenta of a massive particle with mass M span an orbit (4.44) with little
group (4.46). The spin representation R then is a finite-dimensional, irreducible,
generally projective unitary representation of SO(D − 1) specified by some high-
est weight λ. For example, when D = 4, R is a highest-weight representation
of SO(3) = SU(2)/Z2 with spin s ≥ 0; the latter is either an integer or a half-
integer. The carrier space of R has dimension 2s + 1 and is generated by states
| − s〉, | − s + 1〉, . . . , |s − 1〉, |s〉 with definite spin projection along a prescribed
axis. In that case the highest weight λ coincides with s. The higher-dimensional
case is analogous except that the number of coefficients specifying λ is the rank
�(D − 1)/2� of SO(D − 1). We will illustrate this point in Sect. 11.1 when dealing
with partition functions of higher-spin fields in Minkowski space.

Given a spin representation, the remainder of the construction is straightforward:
formula (3.4) yields a Lorentz-invariant measure that can be used to define scalar
products (3.7) of wavefunctions, and the Poincaré representation acts according to
(4.30) with the Radon-Nikodym derivative set to ρ f = 1 thanks to the choice of
measure. For example, when D = 4 and s = 1/2, any state takes the form (3.9).

http://dx.doi.org/10.1007/978-3-319-61878-4_11
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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Massless Particles

The description of massless particles is analogous to that of massive ones, up to
the key difference that the massless little group is the Euclidean group (4.49). It
is a semi-direct product (4.1) with an Abelian normal subgroup, so the exhaustivity
theorem ensures that its irreducible unitary representations are induced and classified
by momentum-like orbits of their own. From the Poincaré viewpoint each induced
representation of (4.49) is a spin representation for a massless particle.

In that context one makes the distinction between two types of massless particles:
particles with discrete spin are those given by spin representations of (4.49) with
vanishing Euclidean momentum. These are Euclidean analogues of the “spinning
vacua” described earlier, except that they are finite-dimensional. They amount to
making the action ofR

D−2 in (4.49) trivial, and coincide with (projective) irreducible
unitary representations of SO(D − 2). Thus massless particles with discrete spin
have a finite-dimensional space of spin degrees of freedom. By contrast, massless
particles with continuous or infinite spin are those whose spin representations of
(4.49) have non-trivial Euclidean momentum. The space of spin degrees of freedom
is infinite-dimensional in that case, since it consists of wavefunctions on a Euclidean
momentum orbit SO(D − 2)/SO(D − 3) ∼= SD−3. Particles with continuous spin
are generally discarded on the grounds that they are unphysical, although they have
recently been described in a field-theoretic framework [12–14].

Tachyons

Tachyons are particlesmoving faster than light. Their little group is SO(D − 2, 1)↑. It
is simple and non-compact, so tachyons either have no spin at all, or have continuous
spin. They are generally considered as unphysical.

4.2.4 Massive Characters

Having completed the enumeration of relativistic particles, we now evaluate charac-
ters of massive irreducible unitary representations of the Poincaré group. Massless
characters are relegated to Sect. 4.2.5. These computations are important for our pur-
poses, as we will rely on them in Chap.11. To our knowledge, Poincaré characters
were first studied in [15, 16] before reappearing more recently in [17–19].

Setting the Stage

By virtue of the Frobenius formula (4.33), the character of an induced representation
vanishes when evaluated on a transformation f that does not belong to the little
group. Since the character is a class function, only the conjugacy class of f matters
for the final result. Accordingly, for a massive particle in D dimensions we let f be
a rotation

http://dx.doi.org/10.1007/978-3-319-61878-4_11
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f =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 · · · 0 0 0
0 cos θ1 − sin θ1 · · · 0 0 0
0 sin θ1 cos θ1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · cos θr − sin θr 0
0 0 0 · · · sin θr cos θr 0
0 0 0 · · · 0 0 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

(4.54)

written here for even D with r = �(D − 1)/2�; if D is odd we erase the last row and
the last column. We assume for simplicity that all angles θ1, . . . , θr are non-zero.

Now let μ be a quasi-invariant measure on a momentum orbit with mass M , and
let δ be the corresponding delta function. Given an arbitrary space-time translation
α, our goal is to evaluate the character of ( f,α) using Eq. (4.33). To do this we treat
separately odd and even space-time dimensions.

Odd Dimensions

For odd D we erase the last row and column of (4.54). Then the Frobenius formula
(4.33) localizes to the unique rotation-invariant point of themomentum orbit, namely
the momentum at rest p = (M, 0, 0, . . . , 0). This allows us to simplify (4.33) by
setting k = p in the exponential and the little group character, and pulling them out
of the integral. Denoting by λ the spin of the particle (it is a highest weight for
SO(D − 1)), we find

χ[( f,α)] = ei Mα0
χ(D−1)

λ [ f ]
∫

Op

dμ(k) δ(k, f · k) (4.55)

where the replacement of k by p has projected the translationα on its time component
α0. The little group character χ(D−1)

λ [ f ] is some function of the angles θ1, . . . , θr

that we do not need to write down at this stage (in practice it follows from the Weyl
character formula and is displayed in Eq. (11.151) below). To obtain (4.55) it only
remains to evaluate the integral of the delta function. As coordinates on the orbit we
choose the spatial components ofmomentum, in terms ofwhich the Lorentz-invariant
measure on Op is (3.4) and the corresponding delta function is (3.42). We thus get

dμ(k) δ(k, q) = d D−1k
√

M2 + k2

√
M2 + k2 δ(D−1)(k − q) = d D−1k δ(D−1)(k − q) ,

(4.56)

where themultiplicative factors of themeasure and its delta function cancel out. Note
that the same cancellation would have taken place for any measure μ proportional
to d D−1k, in accordance with the fact that induced representations are insensitive to
the choice of measure. Applied to (4.55), the cancellation (4.56) allows us to write

χ[( f,α)] = ei Mα0
χ(D−1)

λ [ f ]
∫

RD−1
d D−1k δ(D−1)(k, f · k) (4.57)

http://dx.doi.org/10.1007/978-3-319-61878-4_11
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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where f · k denotes the action of the spatial submatrix of (4.54) on k. The integral
can be written as

∫

RD

d D−1k δ(D−1)
(
(I − f ) · k) = 1

det(I − f )
(4.58)

where I is the (D − 1)-dimensional identity matrix. In terms of angles θi we find

det(I − f ) =
r∏

j=1

∣
∣∣∣
1 − cos θ j sin θ j

− sin θ j 1 − cos θ j

∣
∣∣∣ =

r∏

j=1

4 sin2 θ j =
r∏

j=1

|1 − eiθ j |2. (4.59)

Plugging this into (4.58), the character (4.57) finally becomes

χ[( f,α)] = ei Mα0
χ(D−1)

λ [ f ]
r∏

j=1

1

|1 − eiθ j |2 . (4.60)

Note that for a Euclidean time translation α0 = iβ, this quantity may be seen as
the partition function of a relativistic particle in a rotating frame (albeit with purely
imaginary angular velocity).

Remark The localization effect (4.58) is a restatement of the Atiyah-Bott fixed point
theorem. In that context the term

1

det(I − f )
(4.61)

is the Lefschetz number of the operator T [( f,α)]. If f was a number e−βω , (4.61)
would coincide with the partition function of a harmonic oscillator with frequency
ω at temperature 1/β.

Even Dimensions

For even D the rotation f is exactly given by (4.54). Then the situation is more
complicated because the integral (4.33) localizes to a line rather than a point, as
in Fig. 3.2. To make things simple we take α = (α0, 0, . . . , 0) to be a pure time
translation. Formula (4.55) is then replaced by

χ[( f,α)] = χ(D−1)
λ [ f ]

∫

RD−1
d D−1k eiα0

√
M2+k2 δ(D−1)(k − f · k) (4.62)

where we have already implemented the simplification (4.56). The SO(D − 1) char-
acter χ(D−1)

λ has been pulled out of the integral because, for D even, boosts along
the direction kD−1 commute with rotations (4.54). It remains once more to integrate
the delta function in (4.62). As far as the first D − 2 components of k are concerned,

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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the computation is the same as in the odd-dimensional case and results in a factor
(4.58) given by (4.59). But the last component of k is untouched by (4.54), so (4.62)
becomes

χ[( f,α)] = χ(D−1)
λ [ f ]

r∏

j=1

1

|1 − eiθ j |2
∫ +∞

−∞
dk eiα0

√
M2+k2 δ(1)(k − k) , (4.63)

where k ≡ kD−1. Here the last term is an infrared-divergent factor

δ(k − k) = 1

2π

∫ +∞

−∞
dz ≡ L

2π
(4.64)

where the length scale L is an infrared regulator. The integral in (4.63) then gives

∫ +∞

−∞
dk eiα0

√
M2+k2 = 2M K1(−i Mα0)

where K1 is the first modified Bessel function of the second kind. In conclusion we
get

χ[( f,α)] = M L

π
K1(−i Mα0)χ(D−1)

λ [ f ]
r∏

j=1

1

|1 − eiθ j |2 , (4.65)

whose Wick-rotated version can now be seen as the rotating partition function of a
particle trapped in a box of height L .

Time Translations

All characters written above diverge when one of the angles θ j goes to zero. These
divergences are infrared since they are due to delta functions evaluated at zero in
momentum space, and can be regularized as in (4.64). A case of particular interest is
the character of a pure time translation, whose Wick rotation is a canonical partition
function (3.50). Using once more the Frobenius formula (4.33) and the cancellation
(4.56), and letting α = (α0, 0, . . . , 0) be a pure time translation, we find

χ[(e,α)] = N
∫

RD−1
d D−1k eiα0

√
M2+k2 δ(D−1)(0) (4.66)

where N ≡ dim(E) is the number of spin degrees of freedom of the particle. The
infrared-divergent delta function can be seen as the spatial volume of the system,

δ(D−1)(0) = 1

(2π)D−1

∫

RD−1
d D−1x = V

(2π)D−1
.

Using spherical coordinates we can then rewrite (4.66) as

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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χ[(e,α)] = N V

(2π)D−1

2π(D−1)/2

�((D − 1)/2)

∫ +∞

0
k D−2 dk eiα0

√
M2+k2

= 2N V

(2π)D−1

(
2πM

−iα0

)(D−2)/2

M K D/2(−i Mα0) , (4.67)

where K D/2 denotes once more a modified Bessel function of the second kind. This
is the character of a pure time translation in a massive Poincaré representation. For
α0 = iβ purely imaginary, it becomes the canonical partition function of a massive
relativistic particle,

Tr
(
e−βH

)
massive particle = 2N V

(2π)D−1

(
2πM

β

)(D−2)/2

M K D/2(βM). (4.68)

4.2.5 Massless Characters

Characters of massless Poincaré representations can be evaluated along the same
lines as massive ones, but there are subtleties due to the little group (4.49). The
latter admits both finite- and infinite-dimensional irreducible unitary representations,
corresponding to massless particles with discrete or continuous spin, respectively.
Here we focus on the discrete case. As in the massive case we treat separately even
and odd dimensions, this time starting with the former. For simplicity we take α to
be a pure time translation.

Even Dimensions

For even D the Lorentz transformation (4.54) belongs to the little group of a mass-
less particle since it leaves invariant the momentum vector (E, 0, . . . , 0, E). The
character computation then is the same as in the even-dimensional massive case; for-
mula (4.63) still holds with M = 0 and χ(D−1) replaced by the character χ(D−2) of a
representation of SO(D − 2) instead of SO(D − 1). Note that for even D these two
groups have the same rank r = �(D − 1)/2�, so there is no restriction on the values
of the angles θ1, . . . , θr (this will change for odd D). Using the regulator (4.64) and
the fact that ∫ +∞

−∞
dk ei |k|(α0+iε) = − 2

iα0
,

one finds the character

χ[( f,α)] = i L

πα0
χ(D−2)

λ [ f ]
r∏

j=1

1

|1 − eiθ j |2 . (4.69)

Up to the replacement of D − 1 by D − 2, this is the limit M → 0 of the massive
character (4.65).
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Odd Dimensions

For odd D the transformation (4.54) (with the last row and column suppressed) is no
longer an element of the little group of (E, 0, . . . , 0, E) so its character vanishes if
θr �= 0. This is consistentwith the fact that SO(D − 2) has lower rank than SO(D−1)
when D is odd. Accordingly we now take θr = 0 in (4.54), being understood that
the last row and column are suppressed. From there on the character computation is
identical to the cases treated above, except that the infrared divergence of the integral
becomes worse and requires two regulators L , L ′:

∫

R2
dkdq eiα0

√
k2+q2

δ(1)(k − k)δ(1)(q − q) = − L L ′

2π(α0)2
. (4.70)

Massless characters in odd dimension D thus read

χ[( f,α)] = χ(D−2)
λ [ f ]

(
− L L ′

2π(α0)2

) r−1∏

j=1

1

|1 − eiθ j |2 (4.71)

where it is understood that θr = 0 in (4.54) and χ(D−2)
λ is a character of SO(D − 2).

Note that this expression is not the massless limit of (4.60) because in general θr �= 0
in the latter formula. However, upon setting θr = 0 in (4.57) and regulating the
resulting double infrared divergence as in (4.70), the limit M → 0 does produce an
expression of the form (4.71), albeit with a reducible representation of SO(D − 2).
We shall return to this in Sect. 11.1. Characters of time translations can be treated as
in the massive case and coincide, up to spin multiplicity, with the massless limit of
(4.67).

4.2.6 Wigner Rotations and Entanglement*

We now analyse the Wigner rotation (4.31) and show that, for generic spinning
particles, it entangles momentum and spin degrees of freedom. This phenomenon
was first investigated in [20] (see also [21] and the related considerations in [22, 23]).

Wigner Rotations

Consider a particle with mass M and spin representationR. We wish to understand
the action of the Wigner rotation (4.31) for an arbitrary momentum q belonging to
its orbit, and for a boost

f =

⎛

⎜⎜⎜⎜⎜
⎝

cosh γ − sinh γ 0 · · · 0
− sinh γ cosh γ 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞

⎟⎟⎟⎟⎟
⎠

(4.72)

http://dx.doi.org/10.1007/978-3-319-61878-4_11
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with rapidity γ in the direction x1. Since the gq ’s are standard boosts (4.53), the
combination g−1

q f g f −1·q is a sequence of three pure boosts in a plane, so we may
safely take D = 3without affecting the outcome of the computation. Themomentum
q then reads

q =
⎛

⎝

√
M2 + Q2

Q cosϕ
Q sinϕ

⎞

⎠ (4.73)

for some angle ϕ and some positive number Q. After a mildly cumbersome but
straightforward computation, one finds a Wigner rotation matrix

g−1
q f g f −1·q =

⎛

⎝
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞

⎠ (4.74)

whose entries are given by

sin θ = − M sin(ϕ) sinh(γ)
√

Q2 sin2(ϕ) + (Q cos(ϕ) cosh(γ) +√
M2 + Q2 sinh(γ))2

,

cos θ = Q cosh(γ) +√
M2 + Q2 cos(ϕ) sinh(γ)

√
Q2 sin2(ϕ) + (Q cos(ϕ) cosh(γ) +√

M2 + Q2 sinh(γ))2
.

(4.75)

This is a pure rotation, as it should. It represents the fact that a boost acting on a
particle with non-zero momentum is seen, from the rest frame of the particle, as a
boost combined with a rotation (4.74) rather than a pure boost. The rotation only
affects spin degrees of freedom; scalar particles are insensitive to it.

The Wigner rotation (4.75) is responsible for the phenomenon of Thomas preces-
sion [24] (see also [11], Sect. 11.8). The latter is visible in atomic physics, where
the spin of an electron orbiting around a nucleus undergoes a slow precession due to
the fact that the electron’s acceleration is a sequence of boosts directed towards the
nucleus.

Momentum/spin Entanglement

In (3.8) we saw that a space of E-valued wavefunctions onOp is a tensor product of
E with the scalar space L2(Op,μ, C). For a relativistic particle, the former consists
of spin degrees of freedom while the latter accounts for momenta (or positions after
Fourier transformation). For example, any state of a massive particle with spin 1/2
takes the form (3.9) and describes the separate propagation of the two spin states |+〉
and |−〉. (For simplicity we use the Dirac notation until the end of this section.)

Hilbert space factorizations such as (3.8) are seldom preserved by unitary maps.
Indeed, ifH = A ⊗ B and |�〉 ∈ H is a state with unit norm, the reduced density
matrix associated with |�〉 and acting in B is ρ ≡ TrA|�〉〈�|. When U is a unitary
operator in H , it is generally not true that the reduced density matrix of U · |�〉 is

http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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unitarily equivalent toρ. In particular,U does not preserve the degree of entanglement
between A and B. Accordingly one may ask [20] whether Poincaré representations
spoil the splitting (3.8). To answer this, consider for definiteness a massive spin 1/2
particle in four dimensions. We start from a normalized E-valued wavefunction

�(q) = ψ(q)|+〉, i.e. |�〉 = |ψ〉 ⊗ |+〉 (4.76)

where ψ is some complex-valued wavefunction while |+〉 is one of the two members
of an orthonormal basis |+〉, |−〉 of E . This state represents a particle with spin
up (say along the x3 axis) propagating with a momentum probability distribution
dμ(q)|ψ(q)|2. (For definiteness we take the measure μ to be the Lorentz-invariant
expression (3.4).) The corresponding reduced densitymatrix obtained by tracing over
spin degrees of freedom acts on the scalar Hilbert space L2(Op,μ, C) and reads

ρ = 〈+|
(
|ψ〉|+〉〈ψ|〈+|

)
|+〉 + 〈−|

(
|ψ〉|+〉〈ψ|〈+|

)
|−〉 = |ψ〉〈ψ| ,

which is a pure state. Now let us act on (4.76) with a Lorentz transformation f .
According to (4.30), and writing U ≡ T [( f, 0)], the resulting wavefunction is

(U · �) (q) = Wq [ f ] · �( f −1 · q)
(4.76)= ψ( f −1 · q) Wq [ f ]|+〉 (4.77)

where Wq [ f ] is the Wigner rotation (4.31). Denoting φ(q) ≡ ψ( f −1 · q) we now
find that the entries of the reduced density matrix of (4.77) are

ρ̃(q, q ′) = (
φ(q)χ+(q)

)(
φ(q ′)χ+(q ′)

)∗ + (
φ(q)χ−(q)

)(
φ(q ′)χ−(q ′)

)∗
(4.78)

where we have defined χ±(q) ≡ 〈±|Wq [ f ]|+〉. In general expression (4.78) is not
equal to a product ψ̃(q)ψ̃∗(q ′) (for some complexwavefunction ψ̃), so the state (4.78)
is not pure! In particular the boosted state (4.77) is generally entangled with respect
to the splitting (3.8), even though the original state (4.76) was not. The reason for
this is that the Wigner rotation (4.74) generally has non-vanishing +− entries. Note
that the functions χ± satisfy |χ+|2 + |χ−|2 = 1 by virtue of the fact that Wigner
rotations are unitary, so formula (4.78) indeed defines a density matrix.

These arguments can be generalized to any unitary representation of a semi-
direct product (4.1). The only exceptions arise (i) if the spin representation R is
one-dimensional so that E = C and the tensor product (3.8) is trivial, or (ii) if f is
such that Wq [ f ] does not depend on q. In both situations the splitting (3.8) is robust
against symmetry transformations. An example of momentum-independent Wigner
rotations will be provided by the Bargmann group below. Thus the entanglement of
spin and momentum due to Wigner rotations is a purely relativistic effect.

http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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4.3 Poincaré Particles in Three Dimensions

Herewe apply the considerations of the previous section to the Poincaré group in D =
3 space-time dimensions. This exercise will be a helpful guide for the description of
BMS3 particles in part III. To our knowledge, representations of Poincaré in three
dimensions have previously been studied in [25, 26].

4.3.1 Poincaré Group in Three Dimensions

Prelude: The Group SL(2, R)

Many properties of the Poincaré group in three dimensions rely on the group
SL(2, R), so we start by describing the latter. SL(2, R) is the group of linear trans-
formations of the plane R

2 that preserve volume and orientation. It consists of real
2 × 2 matrices with unit determinant:

(
a b
c d

)
, ad − bc = 1. (4.79)

The centre of SL(2, R) consists of the identity matrix and its opposite, thus spanning
a group Z2. Furthermore:

Lemma The group SL(2, R) is connected, but not simply connected. It is homotopic
to a circle and its fundamental group is isomorphic to the group of integers Z:

π1(SL(2, R)) ∼= Z. (4.80)

Proof Since the determinant of (4.79) is non-zero, the vectors (a, b) and (c, d) in
R

2 are linearly independent. We can thus find linear combinations of these vectors
that span an orthonormal basis of R

2. In other words there exists a real matrix

K̄ =
(

ᾱ 0
β̄ γ̄

)

such that, for any SL(2, R) matrix S of the form (4.79), the product

O ≡ K̄ S =
(

ᾱa ᾱb
β̄a + γ̄c β̄b + β̄d

)

belongs to the orthogonal group O(2). We can make ᾱ positive by setting ᾱ−1 =√
a2 + b2 and we can set γ̄ = 1/ᾱ so thatO ∈ SO(2). Any matrix S ∈ SL(2, R) can

therefore be decomposed uniquely as
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S = K̄ −1O ≡ KO, with O ∈ SO(2) and K =
(

x 0
y 1/x

)
(4.81)

for some y ∈ R and x ∈ R strictly positive.4 This shows that SL(2, R) is connected
and homotopic to its maximal compact subgroup consisting of rotations

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ R. (4.82)

In particular, the fundamental group of SL(2, R) is isomorphic to Z. �

Lorentz Transformations in Three Dimensions

The definitions of Sect. 4.2.1 remain valid in three dimensions. In particular the
Lorentz group O(2, 1) still has four connected components as in Fig. 4.2, and it is
still multiply connected. However, in contrast to the higher-dimensional case, the
Lorentz group is now homotopic to a circle and therefore has a fundamental group
isomorphic to Z. This is a consequence of the following result:

Proposition There is an isomorphism

SO(2, 1)↑ ∼= SL(2, R)/Z2 ≡ PSL(2, R) (4.83)

where theZ2 subgroup of SL(2, R) consists of the identity matrix and its opposite. In
particular, the fundamental group of the connected Lorentz group in three dimensions
is isomorphic to Z.

Proof Our goal is to build a homomorphism

φ : SL(2, R) → O(2, 1) : f �→ φ[ f ] (4.84)

and then use the property

Im(φ) ∼= SL(2, R)/Ker(φ). (4.85)

Let A be the Lie algebra sl(2, R). Each matrix α ∈ sl(2, R) can be written as a linear
combination

α = αμtμ (4.86)

where the αμ’s are real coefficients and the matrices

t0 ≡ 1

2

(
0 1

−1 0

)
, t1 ≡ 1

2

(
0 1
1 0

)
, t2 ≡ 1

2

(
1 0
0 −1

)
(4.87)

form a basis of sl(2, R). With these conventions,

4This is a rewriting of the Iwasawa decomposition.
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det(α) = −1

4
ημνα

μαν = −1

4
α2. (4.88)

Now SL(2, R) naturally acts on A according to the adjoint representation,

A → A : α �→ f α f −1. (4.89)

This action preserves the determinant since det( f ) = 1, so according to (4.88) it may
be seen (for each f ) as a Lorentz transformation. This motivates the definition of a
homomorphism (4.84) given by

f tμ f −1 = tν φ[ f ]νμ ∀μ = 0, 1, 2. (4.90)

The entries of φ[ f ] are quadratic combinations of those of f , so φ is a continuous
map. Since SL(2, R) is connected, the image Im(φ) is contained in the connected
Lorentz group SO(2, 1)↑. In fact one has Im(φ) = SO(2, 1)↑, which follows from
the standard decomposition theorem for Lorentz transformations (see e.g. [10, 27]).
The kernel of φ coincides with the centre of SL(2, R), i.e. Ker(φ) = {I,−I}. The
isomorphism (4.83) follows upon using (4.85). �

Remark For future reference note that the homomorphism (4.90) explicitly reads

φ

[(
a b
c d

)]
=
⎛

⎜
⎝

1
2 (a

2 + b2 + c2 + d2) 1
2 (a

2 − b2 + c2 − d2) −ab − cd
1
2 (a

2 + b2 − c2 − d2) 1
2 (a

2 − b2 − c2 + d2) −ab + cd
−ac − bd bd − ac ad + bc

⎞

⎟
⎠ ,

(4.91)
where the argument of φ is an SL(2, R) matrix. This will be useful in Sect. 9.1.

Poincaré Group in Three Dimensions

The Poincaré group for D = 3 is defined as in (4.39) and its connected subgroup is
(4.40). Owing to the isomorphism (4.83), its double cover can be written as

SL(2, R) � R
3 (4.92)

where the action of SL(2, R) on R
3 is given by (4.89). The latter is in fact the adjoint

representation so we can also rewrite (4.92) as

double cover of ISO(2, 1)↑ = SL(2, R) �Ad sl(2, R)Ab (4.93)

where sl(2, R)Ab is the Lie algebra of SL(2, R), seen as an Abelian vector group.
This observation will turn out to be crucial in part III of this thesis. We stress that
(4.93) is not the universal cover of the Poincaré group in three dimensions, since
SL(2, R) is homotopic to a circle. This implies that (4.93) admits topological pro-
jective representations (which are equivalent to exact representations of its universal
cover). There are no algebraic central extensions.

http://dx.doi.org/10.1007/978-3-319-61878-4_9
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4.3.2 Particles in Three Dimensions

Here we describe projective irreducible unitary representations of the connected
Poincaré group in three dimensions and point out a few differences with respect to
the higher-dimensional case described in Sect. 4.2.

Orbits and Little Groups

The classification of Poincaré momentum orbits in three dimensions is the same as
in Sect. 4.2.2 and is summarized in Fig. 4.3. Considering the double cover (4.93) for
definiteness, the little groups are as follows.

Let us prove that these are the correct little groups. We shall use the fact that
the action of Lorentz transformations on momenta is equivalent to its action on
translations, which in turn is equivalent to the adjoint representation of SL(2, R)

according to the definition (4.93). From that point of view a momentum (p0, p1, p2)

is represented by a matrix ημν pμtν where ημν is the Minkowski metric in D = 3
dimensions and the tμ’s are given by (4.87). Explicitly the matrix is

p = 1

2

(
p2 −p0 + p1

p0 + p1 −p2

)
. (4.94)

In that language the little group of p is the set of SL(2, R) matrices that commute
with (4.94). It immediately follows that the little group of p = 0 is SL(2, R). For
massive orbits we move to a rest frame where p0 = M and p1 = p2 = 0; the only
matrices leaving p fixed then are rotations (4.82). For tachyonswe take p0 = p1 = 0,
p2 �= 0 and find that the little group consists of matrices of the form

±
(

ex 0
0 e−x

)
, x ∈ R, (4.95)

spanning a group R × Z2. Finally, for massless particles we take p0 = −p1 �= 0 and
p2 = 0; the resulting little group R × Z2 is spanned by matrices of the type

±
(
1 x
0 1

)
, x ∈ R. (4.96)

This reproduces all little groups listed in Table4.1.

Table 4.1 Orbits and little groups of the Poincaré group in three dimensions

Orbit Little group

Trivial SL(2, R)

Massive U(1) ∼= SO(2)

Massless R × Z2

Tachyonic R × Z2
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Note that the little groups listed in Table4.1 are sensitive to the cover chosen
in (4.93). Had we chosen the standard connected Poincaré group SO(2, 1)↑ � R

3,
the little groups for massless particles and tachyons would be quotiented by Z2 and
would reduce to R. For the universal cover of the Poincaré group, the little groups
would instead get decompactified, so e.g. U(1) would be replaced by R. This has
important implications for the spin of relativistic particles in three dimensions.

Massive Particles

The properties of massive particles in three dimensions are the same as in Sect. 4.2.3.
In particular their momentum orbits take the form

Op
∼= SO(2, 1)↑/U(1) ∼= SL(2, R)/S1. (4.97)

The only subtlety is that the group of spatial rotations now is U(1) ∼= SO(2), so the
spin of a massive particle is a one-dimensional irreducible unitary representation
of the form (2.13) labelled by some number s. If the double cover (4.93) was the
universal cover of the Poincaré group, that number would be restricted to integer or
half-integer values. However the fact that (4.93) is homotopic to a circle implies that
s may take any real value. Thus massive particles in three dimensions can be anyons
[28, 29]. The same phenomenon will occur with massive BMS3 particles.

Remark Wigner rotations do occur in three dimensions, but they do not lead to
momentum/spin entanglement when the space of spin degrees of freedom is one-
dimensional.

Massless Particles

The spin properties of massless particles in three dimensions are also somewhat
peculiar compared to those of their higher-dimensional cousins. Their little group
R × Z2 can be seen as a Euclidean group in one dimension, whereZ2 plays the role of
rotationswhileR is spanned byEuclidean translations. If the latter is represented non-
trivially, one obtains an analogue of “continuous spin” particles in three dimensions,
although in the present case the space of spin degrees of freedom is actually finite-
dimensional. By contrast, when R is represented trivially, the spin representation
boils down to an irreducible unitary representation of Z2. The latter has exactly two
irreducible unitary representations (the trivial one and the fundamental one), so we
conclude that “discrete spin” massless particles in three dimensions can only be
distinguished by their statistics (bosonic or fermionic); they have no genuine spin.
This is consistent with the fact that massless field theories in three dimensions either
have no local degrees of freedom at all (such as in gravity or Chern-Simons theory),
or have only scalar or Weyl fermion degrees of freedom.

http://dx.doi.org/10.1007/978-3-319-61878-4_2
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4.3.3 Characters

For future reference, we now list characters of irreducible unitary representations of
the Poincaré group in three dimensions. The results of Sects. 4.2.4 and 4.2.5 apply, so
the character of a rotation by θ combined with an arbitrary translationα in a Poincaré
representation with mass M and spin s is given by formula (4.60),

χ[(rotθ,α)] = ei Mα0+isθ 1

|1 − eiθ|2 = ei Mα0+isθ 1

4 sin2(θ/2)
, (4.98)

where we have replaced the little group character by χλ[ f ] = eisθ. In part III we
shall encounter the BMS3 generalization of this expression. Similarly the character
(4.68) of Euclidean time translations becomes

Tr
(
e−βH

)
massive particle = V

2πβ2
(1 + βM)e−βM . (4.99)

Characters of massless particles with discrete spin are given by formula (4.71) with
D = 3, r = 1 and χλ = ±1.

4.4 Galilean Particles*

In this sectionweclassify irreducible unitary representations of theBargmanngroups,
i.e. non-relativistic orGalilean particles. This examplewill be useful as a comparison
to the relativistic case, and will also involve a dimensionful central charge that makes
it similar to the centrally extended BMS3 group of part III. This being said, the
material exposed in this section is not crucial for our later considerations, so it may
be skipped in a first reading. The plan is similar to that of Sect. 4.2: after defining
Bargmann groups, we classify their orbits and litte groups, describe non-relativistic
particles and compute their characters. We refer to [30, 31] for further reading on
the Bargmann groups and to [32] for their representations.

4.4.1 Bargmann Groups

Galilei Groups

Definition The Galilei group in D space-time dimensions is a nested semi-direct
product (

O(D − 1) � R
D−1)

�

(
R

D−1 × R

)
(4.100)
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whose elements are quadruples ( f, v,α, t) where f ∈ O(D − 1) is a rotation, v is a
boost belonging to the first R

D−1, α is a spatial translation belonging to the second
R

D−1, and t ∈ R is a time translation. The group operation is

( f, v,α, s) · (g,w,β, t) = (
f · g, v + f · w,α + f · β + vt, s + t

)
(4.101)

where the dots on the right-hand side denote either matrix multiplication, or the
action of a matrix on a column vector. The largest connected subgroup of (4.100) is
obtained upon replacing O(D − 1) by SO(D − 1); its universal cover is obtained by
replacing SO(D − 1) by its universal cover, Spin(D − 1).

The intricate structure (4.100) translates the fact that space and time live on dif-
ferent footings in Galilean relativity. Thus the analogue of a Lorentz transforma-
tion now is a pair ( f, v), while space-time translations are pairs (α, t). Boosts and
rotations span a group SO(D − 1) � R

D−1 while space-time translations span an
Abelian group R

D . In particular each boost is a velocity vector v acted upon by rota-
tions according to the matrix representation of O(D − 1). Since time is absolute in
Galilean relativity, the last entry on the right-hand side of (4.101) is a sum s + t with-
out influence of boosts. The term vt of the third entry is a time-dependent translation
at velocity v. Finally, there is an Abelian subgroup R

2D consisting of pairs

(e, v,α, 0) (4.102)

where e is the identity in O(D − 1).
The Lie algebra of the Galilei group is generated by (D − 1)(D − 2)/2 rotation

generators, (D − 1) boost generators, (D − 1) spatial translation generators, and one
generator of time translations. We will not display their Lie brackets here.

Bargmann Groups

The Galilei group turns out to admit a non-trivial algebraic central extension:

Definition The Bargmann group in D space-time dimensions is a centrally extended
semi-direct product

Bargmann(D) ≡ (
O(D − 1) � R

D−1)
�

(
R

D−1 × R

)× R , (4.103)

whose elements are 5-tuples ( f, v,α, t,λ) where ( f, v,α, t) belongs to the Galilei
group (4.100) while λ is a real number. The group operation is

( f, v, α, s, λ) · (g,w, β, t,μ) =
(
( f, v, α, s) · (g,w,β, t),λ + μ + v · f · β + 1

2
v2t

)

(4.104)

where the first entry on the right-hand side is given by (4.101) while v · β ≡ viβi is
the Euclidean scalar product of v and β; in particular, v2 ≡ vivi .

This central extension says that the Abelian subgroup of boosts and translations
(4.102) gets extended into a Heisenberg group (2.37):

http://dx.doi.org/10.1007/978-3-319-61878-4_2
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(e, v,α, 0,λ) · (e,w,β, 0,μ) = (
e, v + w,α + β, 0,λ + μ + v · β

)
.

In other words, in quantum mechanics, spatial translations and boosts do not com-
mute. Note that, even in the Bargmann group, the normal subgroup of (centrally
extended) space-time translations

(e, 0,α, t,λ) (4.105)

remains Abelian. Hence the exhaustivity theorem of Sect. 4.1.5 applies to the
Bargmann group: all Galilean particles are induced representations.

For D ≥ 4 space-time dimensions, Eq. (4.104) is the only algebraic central exten-
sion of the Galilei group. But for D = 3, the Galilei group admits three non-trivial
differentiable central extensions [31], one of which is the one displayed in (4.104).
We will not take these extra central extensions into account. As regards topological
central extensions, the Galilean situation is identical to that of the Poincaré group.
ThusBargmann(3) has a fundamental groupZ and admits infinitelymany topological
projective representations, while for D ≥ 4 the fundamental group of Bargmann(D)

is Z2, leading either to exact representations or to representations up to a sign.

Remark The Bargmann group is a limit of the Poincaré group as the speed of light
goes to infinity (see e.g. [3]), knownmore accurately as an Inönü-Wigner contraction
[33]. We will not describe this procedure here, although we will encounter a very
similar one in part III when showing that the BMS3 group is an ultrarelativistic limit
of two Virasoro groups.

4.4.2 Orbits and Little Groups

We now classify the orbits and little groups of the Bargmann group (4.103). We
follow the same strategy as in Sect. 4.2.2.

Generalized Momenta

The Abelian normal subgroup of (4.103) consists of centrally extended translations
(4.105). Its dual space consists of generalized momenta

(p, E, M) (4.106)

paired with translations according to5

〈(p, E, M), (α, t,λ)〉 = 〈p,α〉 − Et − Mλ (4.107)

where 〈p,α〉 ≡ piα
i , i = 1, . . . , D − 1.Accordingly,p is dual to spatial translations

and represents the actual momentum of a particle; E is dual to time translations and

5The minus signs are conventional, and included for later convenience.
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represents the particle’s energy; finally M is a central charge dual to the central
entries λ in (4.105). Working in units such that � = 1, Eq. (4.104) says that λ has
dimensions [distance] × [velocity] so the pairing (4.107) implies that M is a mass
scale:

[M] = [energy] × [time]
[distance] × [velocity] = [mass]. (4.108)

In fact we will see below that M is the mass of a non-relativistic particle. Note that
M lives on a different footing than p and E , which is why the relation E = Mc2 is
invisible in Galilean relativity.

According to the structure (4.103), the group G acting on translations is the
Euclidean group spanned by rotations and boosts. Its action is given by

σ( f,v)(α, t,λ) =
(

f · α + vt, t,λ + v · f · α + 1

2
v2t

)
(4.109)

by virtue of (4.104). The pairing (4.107) then yields the action σ∗ of boosts and
rotations on generalized momenta:

〈
σ∗

( f,v)(p, E, M), (α, t,λ)
〉 =

(4.16)= 〈
(p, E, M),σ( f −1,− f −1·v)(α, t,λ)

〉

=
〈
(p, E, M),

(
f −1 · α − f −1 · vt, t,λ − v · α + 1

2
v2t

)〉

(4.107)= 〈
p, f −1 · α − f −1 · vt

〉− Et − M
(
λ − v · α + 1

2
v2t

)
, (4.110)

wherewe have used the fact that rotations preserve Euclidean scalar products.We can
then use the Euclidean analogue of the isomorphism (4.42) to identify (RD−1)∗ with
R

D−1 and rewrite the pairing 〈p,α〉 = piα
i as a scalar productp · α = piαi = piαi ,

where indices are raised and lowered thanks to the Euclidean metric. This allows us
to rewrite v · α as 〈v,α〉 in (4.110), and leads to

σ∗
( f,v)(p, E, M) =

(
f · p + Mv, E + v · f · p + 1

2
Mv2, M

)
. (4.111)

One may recognize here the non-relativistic transformations laws of momentum and
energy under rotations and boosts. The mass M is left unchanged, as was to be
expected for a central charge.

Orbits

Let us classify orbits of generalized momenta under the transformations (4.111).
Since the mass M is invariant, it is a constant quantity specifying each orbit; orbits
with different masses are disjoint. In particular, the orbits differ greatly depending
on whether M vanishes or not.
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A massless non-relativistic particle is one for which M = 0, whereupon (4.111)
simplifies to

σ∗
( f,v)(p, E, 0) =

(
f · p, E + v · f · p, 0

)
. (4.112)

This implies that the norm of the momentum p of a massless particle is invariant
under rotations and boosts. If p = 0 the particle is static (in all reference frames) and
the momentum orbit is trivial. If on the other hand p �= 0, then the particle moves
(in all references frames); its momentum orbit is

O(p,E,0) = {
( f · p, E + v · f · p, 0)

∣∣ f ∈ SO(D − 1), v ∈ R
D−1} ∼= SD−2 × R

where the sphere SD−2 is spanned by all momenta f · p while R is spanned by the
values of energy. The little group is

G(p,E,0) = SO(D − 2) � R
D−2 (4.113)

and consists of rotations leaving p invariant together with boosts that are orthogonal
to p. Note that this is the same little group (4.49) as for relativistic massless particles.

A massive non-relativistic particle is such that M �= 0. Let (p, E) be its momen-
tum and energy. Then the boost v = −p/M plugged in (4.111) maps (p, E, M) on

σ∗
(e,−p/M)(p, E, M) =

(
0, E + p2

2M
, M

)
(4.114)

so any massive particle admits a rest frame. If we call E0 ≡ E + p2/2M , the orbit
of (4.114) under rotations and boosts is a parabola

O(0,E,M) =
{(

Mv, E0 + Mv2

2
, M

)∣∣
∣∣v ∈ R

D−1

}
⊂ R

D−1 × R. (4.115)

As orbit representative we can take the generalized momentum in the rest frame,

(0, E0, M) (4.116)

where E0 is an arbitrary real number; at fixed M , representatives with different values
of E0 define distinct orbits. The little group is the group of rotations

G(0,E0,M) = SO(D − 1) (4.117)

in accordance with the fact that the orbit (4.115) is diffeomorphic to the quotient
space

(
SO(D − 1) � R

D−1
)
/SO(D − 1) ∼= R

D−1. Note again that this is exactly
the same little group (4.46) as for relativistic massive particles. Finally, pure boosts

gq = (e,q/M) (4.118)
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provide a continuous family of standard boosts on the orbit (4.115) of (4.116). Note
that energy is bounded from below on the orbit if and only if M > 0.

4.4.3 Particles

According to the exhaustivity theorem of Sect. 4.1.5, all irreducible unitary repre-
sentations of Bargmann groups are induced, and they are classified by momentum
orbits. Each such representation consists of wavefunctions on an orbit, representing
the quantum states of a non-relativistic particle.

For example, the spin of a massive Galilean particle is an irreducible unitary
representation of SO(D − 1). The space of states of the particle then consists of
wavefunctions on the orbit (4.115) taking values in the space of the spin representa-
tion. Scalar products of wavefunctions are defined as usual by (3.7), where μ is some
measure on the orbit. For convenience one can pick the standard Lebesgue measure
d D−1q, which is left invariant by both rotations and boosts since (4.111) says that
they act on (4.115) as Euclidean transformations q �→ f · q + Mv.

In order to write down formula (4.30) explicitly for a non-relativistic particle, we
still need to understand the Wigner rotation (4.31). Let us evaluate it for a pair ( f, v)
at a point q belonging to the momentum orbit. We have ( f, v) · q = f · q + Mv, so
the standard boost (4.118) for the momentum ( f, v)−1 · q is g( f,v)−1·q = (

e, f −1·q
M −

f −1 · v). Using the group operation (4.101) we read off the Wigner rotation

g−1
q · ( f, v) · g( f,v)−1·q = ( f, 0) . (4.119)

Surprise: the Wigner rotation is blind to boosts! In fact it is momentum-independent
and simply coincides with the rotation f . Thus formula (4.30) for the transformation
law of non-relativistic one-particle states becomes

(
T [( f, v,α, t,λ)] · �

)
(q) = e−i Mλeiq·α−iq2t/2M R[ f ] · �

(
( f, v)−1 · q) , (4.120)

where we have also used the fact that the measure d D−1q is invariant to cancel its
Radon-Nikodym derivative. This result differs from the Poincaré transformations of
relativistic particles in two key respects. First, Galilean Wigner rotations (4.119) are
momentum-independent, so in contrast to (4.75) they do not entanglemomentum and
spin. In fact, there is no Thomas precession for non-relativistic particles. The second
difference is the presence of the mass M : formula (4.120) is an exact representation
of the Bargmann group (4.104), but because M �= 0 it is a projective representation
of the centreless Galilei group (4.100). This can be seen by noting that for a pure
boost v and a spatial translation α, Eq. (4.120) gives

T [v] · T [α] = e−i Mv·α T [α] · T [v], (4.121)

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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which says that boosts and spatial translations do not commute. In part III we will
encounter a similar phenomenon with the BMS3 group, whose dimensionful central
charge will coincide with the Planck mass.

4.4.4 Characters

We now evaluate characters of massive non-relativistic particles. Let M > 0 and
choose a spin λ, specifying an irreducible unitary representation of the little group
SO(D − 1). For definiteness we take the rest frame energy E0 = 0 in (4.115). In
order for the character (4.33) to be non-zero we must set v = 0. Equation (4.119)
then allows us to pull the little group character χR = χ(D−1)

λ out of the momentum
integral:

χ[( f, 0,α, t,λ)] = e−i Mλχ(D−1)
λ [ f ]

∫

RD−1
d D−1k δ(D−1)(k − f · k) eik·α−ik2t/2M .

(4.122)

For simplicity we set λ = 0 from now on and neglect writing this entry. We take
f to be a rotation (4.54) with the first row and column suppressed and all angles
θ1, . . . , θr non-zero, r = �(D − 1)/2�. If D is odd we also erase the last row and
column. We treat separately even and odd dimensions.

If D is odd, then the only fixed point of f on (4.115) is the tip k = 0. The integral
of (4.122) localizes and (4.58) yields

χ[( f, 0,α, t)] = χλ[ f ]
r∏

j=1

1

|1 − eiθ j |2 . (4.123)

Note that translations do not contribute to this result. Up to the normalization of
energy, it coincides with the relativistic character (4.60).

If D is even, then f leaves fixed the whole axis kD−1 as in Fig. 3.2. Integrating
first over the rotated coordinates k1, . . . , kD−2 in (4.122) and writing kD−1 ≡ k, we
find

χ[( f, 0,α, t)] = χ(D−1)
λ [ f ]

r∏

j=1

1

|1 − eiθ j |2
∫ +∞

−∞
dk δ(0) eikαD−1−ik2t/2M . (4.124)

Here the term δ(0) = δ(k − k) is an infrared divergence that we regularize as in
(4.64) with a length scale L . Denoting αD−1 ≡ x , we are left with the integral

∫ +∞

−∞
dk eikx−ik2t/2M =

(
2πM

it

)1/2

ei Mx2/2t (4.125)

and thus conclude

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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χ[( f, 0,α, t)] = L

2π
χ(D−1)

λ [ f ]
r∏

j=1

1

|1 − eiθ j |2
(
2πM

it

)1/2

ei Mx2/2t . (4.126)

The only dependence of this expression onα appears through the componentαD−1 ≡
x , because we picked a rotation f leaving fixed the direction kD−1. For a general
rotation, the component of α appearing in the character would be its projection on
the axis left fixed by f .

Two comments are in order. First note that in D = 2 space-time dimensions,
(4.126) boils down to the quantum propagator of a free non-relativistic particle at
time t and separation x , up to an infrared-divergent factor L . This is because the
character of a pure spatial translation in two space-time dimensions is

Tr
(
T [(e, x, t)]) =

∫ +∞

−∞
dk δ(0) eikx−i tk2/2M =

∫ +∞

−∞
dy

2π

∫ +∞

−∞
dkeikx−i tk2/2M

which we can interpret as the trace of the operator ei Px−i Ht in the Hilbert space of a
free massive particle on the real line:

Tr
(
T [(e, x, t)]) = Tr

(
ei Px−i Ht

) =
∫ +∞

−∞
dy〈y + x |e−i Ht |y〉. (4.127)

The integrand of this expression is the propagator of a free non-relativistic particle
evaluated between y and y + x at time t and coincides with (4.125).

The second comment concerns the relation between Bargmann characters and
Poincaré characters. For even D, (4.126) is the non-relativistic analogue of (4.65)
but the functions appearing in the two results are different. By contrast, for odd D,
the Bargmann character (4.123) coincides with its Poincaré analogue (4.60). This
may be seen as a consequence of the phenomenon (4.58), whose effect is to localize
the computation of the character to the region of momentum space surrounding
the momentum at rest, that is, the non-relativistic region. By contrast, when the
localization is not complete as is the case for even D, the momenta in the integral
(4.125) are arbitrarily large and relativistic effects become important. This produces
a difference between Bargmann and Poincaré characters. It is particularly apparent
for characters of Euclidean time translations, which in the non-relativistic case are
given by

χ[(e, 0, 0,−iβ)] = N V

(2π)D−1

∫

RD−1
d D−1k e−βk2/2M = N V

(
M

2πβ

)(D−1)/2

where N is the dimension of the spin representation. This is the non-relativistic
version of (4.68). For D = 3 (and N = 1) it reduces to V M/(2πβ), which is the
non-relativistic limit of (4.99).
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Chapter 5
Coadjoint Orbits and Geometric
Quantization

In the previous chapters we have seen how representation theory leads to geometric
objects such as orbits. The purpose of this chapter is to describe the opposite phenom-
enon: starting from a coadjoint orbit of a groupG, we will obtain a representation by
quantizing the orbit. This construction will further explain why orbits of momenta
classify representations of semi-direct products. In addition it will turn out to be a
tool for understanding gravity in parts II and III.

The plan is as follows. We start in Sect. 5.1 with basic reminders on symplectic
manifolds with symmetries, including their momentum maps. Along the way we
introduce the notion of coadjoint orbits, which will turn out to be crucial for the
remainder of this thesis. Section5.2 is then devoted to the quantization of symplectic
manifolds, and describes in particular the relation between representation theory and
symplectic geometry. In Sect. 5.3 we reformulate geometric quantization in terms
of action principles that describe the propagation of a point particle on a group
manifold. The two last sections of the chapter are concerned with applications of
these considerations to semi-direct products: in Sect. 5.4 we describe the coadjoint
orbits and world line actions of such groups in general, while in Sect. 5.5 we illustrate
these results with the Poincaré group and the Bargmann group.

Our language in this chapter will be slightly different than in the previous ones,
as we rely on differential-geometric tools that were unnecessary for our earlier con-
siderations. Useful references include [1, 2] for symplectic geometry, [3, 4] for
quantization, as well as the (sadly unpublished) Modave lecture notes [5].

Remark The presentation adopted here is self-contained, but fairly dense. We urge
the reader who is not acquainted with differential geometry to only read Sects. 5.1.1
and 5.1.2, then go directly to part II of the thesis. In doing so one will miss the
symplectic aspects of our later considerations, but the other points of our presentation
should remain accessible.

© Springer International Publishing AG 2017
B. Oblak, BMS Particles in Three Dimensions, Springer Theses,
DOI 10.1007/978-3-319-61878-4_5
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110 5 Coadjoint Orbits and Geometric Quantization

5.1 Symmetric Phase Spaces

In this section we study classical systems with symmetries, that is, homogeneous
symplectic manifolds. We start by recalling a few basic facts about Lie groups and
we define their adjoint and coadjoint representations. We then describe in general
terms Poisson and symplectic structures, and show how such structures arise in the
case of coadjoint orbits. Finally we discuss the notion of momentummaps associated
with the symmetries of a symplectic manifold. We use the notational conventions of
Chap.3.

5.1.1 Lie Groups

A Lie group is a group G which also has a structure of smooth manifold such that
multiplication and inversion are smooth maps. In particular the operations of left and
right multiplication defined in (3.16) and (3.17) are diffeomorphisms. We denote by
e the identity in G, and generic group elements are denoted f , g, etc.

Definition A vector field ξ on G is left-invariant if (L f )∗ξ = ξ for all f ∈ G, i.e. if
(L f )∗gξg = ξ f g for all f, g ∈ G.1

One can verify that any left-invariant vector field is given by ξg = (Lg)∗e X for
some tangent vector X ∈ TeG. Thus the space of left-invariant vector fields is isomor-
phic to the tangent space of G at the identity. We shall denote by ζX the left-invariant
vector field on G given by (ζX )g = (Lg)∗e X .
Definition The Lie algebra of G is the vector space g = TeG endowed with the Lie
bracket

[X,Y ] ≡ [ζX , ζY ]e (5.1)

where the bracket on the right-hand side is the usual Lie bracket of vector fields
evaluated at the identity.

One can show that the bracket (5.1) is such that ζ[X,Y ] = [ζX , ζY ]. As a corollary,
any smooth homomorphism of Lie groups F : G → H is such that its differential
F∗e at the identity is a homomorphism of Lie algebras. When interpreting G as a
symmetry group, the elements of its Lie algebra are seen as “infinitesimal” symme-
tries, i.e. transformations near the identity. In practice the Lie algebra structure of g
is often displayed in terms of a basis {ta|a = 1, . . . , dim g} of g with Lie brackets

[ta, tb] = fab
c tc . (5.2)

In that context the coefficients fabc ∈ R are known as the structure constants of g in
the basis {ta}.

1Recall that the differential of a smooth map F : M → N at p ∈ M is the map F∗p : TpM →
TF(p)N : γ̇(0) �→ d

dt

[F(γ(t))
]∣∣
t=0, where γ(t) is a path in M such that γ(0) = p.

http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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Exponential Map

Definition Let X ∈ g, and let γX be the integral curve2 of the corresponding left-
invariant vector field ζX such that γX (0) = e. Then the exponential map of G is

exp : g → G : X �→ exp[X ] ≡ γX (1). (5.3)

One can verify that, for matrix groups, this definition reduces to the standard Taylor
series

∑
n∈N

Xn/n!. We often denote exp[X ] ≡ eX .
Since the exponential map is defined by a vector flow, it automatically satisfies

exp[(s + t)X ] = exp[sX ] exp[t X ] for all s, t ∈ R. In particular any X ∈ g deter-
mines a one-dimensional subgroup of G consisting of elements exp[t X ], t ∈ R.
Note that left-invariant vector fields are complete, which ensures the existence of
exp[t X ] for all t ∈ R. Finally, for any smooth homomorphism F : G → H , one can
show that

F ◦ expG = expH ◦F∗e . (5.4)

5.1.2 Adjoint and Coadjoint Representations

Definition Let G be a Lie group with Lie algebra g. Then the adjoint representation
of G is the homomorphism

Ad : G → GL(g) : g �→ Adg (5.5)

where Adg is the linear operator that acts on g according to

Adg(X) = d

dt

(
g et X g−1

)∣∣
t=0 . (5.6)

Here one may freely replace et X by any path γ(t) in G such that γ(0) = e and
γ̇(0) = X . For matrix groups, Eq. (5.6) reduces to Adg(X) = gXg−1.

One can verify that this is indeed a representation of G. Using (5.4), one also
shows that it satisfies the identity

eAd f X = f eX f −1 (5.7)

where eX is the exponential map of G. Note that the adjoint representation of any
Abelian Lie group is trivial. Finally, the adjoint representation of the Lie algebra g
is defined as the differential of (5.5) at the identity:

adX (Y ) ≡ d

dt

(
Adet X (Y )

)∣∣
t=0 = [X,Y ] . (5.8)

2An integral curve of a vector field ξ on a manifoldM is a path γ(t) onM such that γ̇(t) = ξγ(t).
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In (4.16) we saw how to define dual representations. Let us apply this to the
adjoint representation (5.5): we write the dual space of g as g∗, which consists of
linear forms p : g → R : X �→ 〈p, X〉. When interpreting G as a symmetry group,
the elements of the dual of g can be seen as “momenta”, or more generally conserved
vectors, associated with the symmetries. In particular the number 〈p, X〉 then is
the Noether charge associated with the symmetry generator X when the system has
“momentum” p.

DefinitionLetG be aLie groupwith Lie algebra g. Then the coadjoint representation
of G is the homomorphism

Ad∗ : G → GL(g∗) : f �→ Ad∗
f (5.9)

which is dual to the adjoint representation in the sense that

Ad∗
f (p) ≡ p ◦ (Ad f )

−1, (5.10)

i.e. 〈Ad∗
f (p), X〉 ≡ 〈p,Ad f −1(X)〉 for all p ∈ g∗ and any X ∈ g. From now on we

refer to elements of g and g∗ as adjoint and coadjoint vectors, respectively.
The coadjoint representation is a linear action of G on g∗. In particular one can

foliate the space g∗ into disjoint G-orbits. We call the set

Wp ≡ {
Ad∗

g(p)
∣∣g ∈ G

}

the coadjoint orbit of p. It is a homogeneous space for the coadjoint action ofG. Note
that the coadjoint representation of anyAbelian group is trivial, so its coadjoint orbits
are single points. By contrast, coadjoint orbits of non-Abelian groups are generally
non-trivial (except if p = 0). We will see in Sect. 5.4.3 that the coadjoint orbits of
semi-direct products contain their momentum orbits.

The dual of the infinitesimal adjoint representation (5.8) is the differential of (5.9)
at the identity, i.e. the coadjoint representation of the Lie algebra g:

ad∗
X (p) ≡ d

dt

(
Ad∗

et X (p)
)∣∣

t=0

(5.10)= −p ◦ adX = −p ◦ [X, ·] . (5.11)

Remark The adjoint and coadjoint representations of a group G are generally
inequivalent. In fact they are equivalent if and only if g admits a non-degenerate
bilinear form (which is the case e.g. for semi-simple Lie groups).

5.1.3 Poisson Structures

The phase space of a system is the set of its classical states. In the previous
pages we have reviewed some basic concepts of group theory, and our goal is to

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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eventually apply them to phase spaces with symmetries. Accordingly we now inves-
tigate Poisson structures and symplectic structures in more detail.

Definition Let M be a manifold. A Poisson structure on M is an antisymmetric
bilinear map3

{·, ·} : C∞(M) × C∞(M) → C∞(M) : F ,G �→ {F ,G}

which satisfies the Jacobi identity and the Leibniz rule:

{F , {G,H}} + {G, {H,F}} + {H, {F ,G}} = 0 (Jacobi),
{F ,GH} = {F ,G}H + G{F ,H} (Leibniz).

This map is called the Poisson bracket on M, and the pair
(
M, {·, ·}) is a Poisson

manifold or a phase space.
The Poisson bracket endows the space of functions C∞(M) with a structure of

Lie algebra; the Leibniz identity implies in addition that the map

{F , ·} : C∞(M) → C∞(M) : G �→ {F ,G}

is a derivation for any function F ∈ C∞(M).4 These properties together endow
the space C∞(M) with the structure of a Poisson algebra. Note that the existence
of a Poisson structure sets no restrictions on the dimension of M. In particular,
odd-dimensional manifolds admit Poisson structures, e.g.M = R

3 with the bracket
{F ,G} = ∂xF∂yG − ∂yF∂xG. This will change once we turn to symplectic struc-
tures.

Definition Let
(
M, {·, ·}) be a Poisson manifold; let H ∈ C∞(M). We call

Hamiltonian vector field associated withH the (unique) vector field ξH onM such
that

ξH = −{H, ·}. (5.12)

The existence of ξH is ensured by the one-to-one correspondence between derivations
of C∞(M) and vector fields on M.

TheHamiltonian vector field associatedwith a functionH is a differential operator
acting on functions on M. Its integral curves are the paths γ(t) in M that satisfy
γ̇(t) = (ξH)γ(t), which in local coordinates on M corresponds to a set of dim(M)

first-order differential equations ẋ i (t) = ξH(x(t)). These are the equations ofmotion
associated with the Hamiltonian H. The definition (5.12) ensures that {H,G} =
−ξH(G), which implies that the equations of motion can be written locally as ẋ i =
{xi ,H} in terms of the Poisson bracket. In particular one has {H,G} = 0 if and only
if G is constant along integral curves of ξH. Note also that

3From now on, real functions on M are denoted as F , G, H, etc.
4A derivation of an algebra A is a linear map D : A → A : a �→ D(a) that satisfies the Leibniz
rule D(a · b) = D(a) · b + a · D(b).
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[ξF , ξG] = −ξ{F ,G} , (5.13)

so the Lie brackets of Hamiltonian vector fields are Hamiltonian.
Nowconsider the set of allHamiltonian vector fields onM; at a point p ∈ M, they

span a subspace of the tangent space TpM. By taking this span for all p ∈ M, one
obtains a subbundle of the tangent bundle TM (i.e. a distribution on M). Because
brackets of Hamiltonian vector fields are Hamiltonian, Frobenius’ theorem implies
that Hamiltonian vector fields yield a foliation ofM into so-called symplectic leaves.
Two points belong to the same leaf if they can be joined by the integral curve of a
Hamiltonian vector field. In the example of R

3 mentioned above, symplectic leaves
are planes z = const. This leads to the definition of symplectic manifolds.

5.1.4 Symplectic Structures

DefinitionLetM be amanifold.A symplectic form onM is a closed, non-degenerate
two-form ω on M.5 The pair (M,ω) is a symplectic manifold.

Non-degeneracy means that, in local coordinates, the components ωi j of ω form
an invertible antisymmetric matrix. This implies that all symplectic manifolds are
even-dimensional. Note that any symplecticmanifold admits a Liouville volume form

μ ≡ ω ∧ . . . ∧ ω︸ ︷︷ ︸
dim(M)/2 times

. (5.14)

The symplectic leaves described above are prime examples of symplectic mani-
folds: they are endowed with a symplectic formω such thatω(ξF , ξG) ≡ {F ,G}; this
condition determines ω unambiguously because symplectic leaves are, by definition,
spanned by the integral curves of Hamiltonian vector fields. Another common exam-
ple is the phase spaceM = R

2n of a non-relativistic particle in R
n , with coordinates

(q1, . . . , qn, p1, . . . , pn) and symplectic form

ω = dqi ∧ dpi (implicit sum over i = 1, . . . , n). (5.15)

Canonical Symplectic Form

The symplectic structure (5.15) has an important generalization: consider a manifold
Q describing the configuration space of a classical system (so dimQ is the number
of Lagrange variables). The corresponding phase space is the cotangent bundle T ∗Q,
which consists of pairs (q,α) where q ∈ Q and α ∈ T ∗

q Q. These pairs are generally
interpreted as describing a “position” q and a “momentum” α, but we will see below
that the interpretation stemming from semi-direct products is different: q will in fact

5Closedness means dω = 0, where d is the exterior derivative. Non-degeneracy means that for all
p ∈ M, any vector v ∈ TpM such that ωp(v,w) = 0 for all w ∈ TpM necessarily vanishes.
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be a momentum (with Q a momentum orbit), while α will essentially be a position
(or rather a translation vector). The symplectic form on T ∗Q is defined as follows.
We let

π : T ∗Q → Q : (q,α) �→ q (5.16)

be the natural projection and define the Liouville one-form θ on T ∗Q by

〈
θ(q,α),V

〉 ≡ 〈
α,π∗(q,α)V

〉
(5.17)

for any vector V ∈ T(q,α)T ∗Q. Then ω ≡ −dθ is the canonical symplectic form on
T ∗Q. In the example (5.15), Q = R

n .
Let us verify that ω = −dθ is indeed symplectic. We choose local coordinates

(q1, . . . , qn) on some open set U ⊂ Q and denote by (qi , p j ) the corresponding
local coordinates on π−1(U ), so that the form α ∈ T ∗

q Q reads α = p j (dq j )q . Given
a vector V ∈ T(q,α)T ∗Q, one can write

V = ai
∂

∂qi
+ b j

∂

∂ p j
⇒ π∗(q,α)V = ai

∂

∂qi
.

Thus the differential of the projection (5.16) projects V on its part tangent toQ. The
definition (5.17) then implies that θ = pidqi , so

ω = −dθ = dqi ∧ dpi (5.18)

is definitely a closed, non-degenerate two-form. It coincides locally with (5.15).

Remark The Darboux theorem states that any point of a symplectic manifold has a
neighbourhood with local coordinates (qi , p j ) such that the symplectic form reads
(5.18). Thus any symplectic manifold is locally equivalent to a cotangent bundle.

Hamiltonian Vector Fields Revisited

Any symplectic manifold can be endowed with a Poisson structure by mimicking the
symplectic leaves described at the end of Sect. 5.1.3. This relies on a new definition
of Hamiltonian vector fields:

Definition Let (M,ω) be a symplectic manifold, F ∈ C∞(M). The Hamiltonian
vector field ξF associated with F is defined by

iξF ω = ω(ξF , ·) != dF . (5.19)

Conversely, a vector field ζ is Hamiltonian if there exists a function F such that
ζ = ξF .

Hamiltonian vector fields can be used to define Poisson brackets in the same way
as on symplectic leaves of Poisson manifolds: for any two functions F , G we write

{F ,G} ≡ ω(ξF , ξG). (5.20)
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In terms of this bracket the definition (5.19) is equivalent to our earlier definition of
Hamiltonian vector fields in (5.12). In local coordinates the definition (5.19) reads

ωi jξ
i
F = ∂ jF ⇔ ξiF = ∂ jFω j i (5.21)

where ωi j are the components of ω and ωi j is the matrix inverse of ωi j . Accordingly,
the bracket (5.20) can be written as {F ,G} = −ωi j∂iF∂ jG.

Note that symplectic manifolds only contain kinematical data: they tell us the
available combinations of “positions” and “momenta” — those combinations are
classical states. Classical observables then are real-valued functions on phase space.
Once we declare that a certain observable H is the Hamiltonian, time evolution is
given locally by the equations of motion ẋ = {x,H}.
Symplectomorphisms

Definition Let (M,ω) and (N ,�) be symplectic manifolds. A symplectomorphism
(or canonical transformation) fromM toN is a diffeomorphism φ : M → N that
preserves the symplectic structure in the sense that6

φ∗� = ω. (5.22)

Then (M,ω) and (N ,�) are said to be symplectomorphic.
When φ : M → N is a symplectomorphism, it preserves Poisson brackets in the

sense that {φ∗F ,φ∗G} = φ∗{F ,G} for all functions F ,G on N , where the brackets
on the left and on the right-hand side are those ofM andN , respectively. Note that
the flow of any Hamiltonian vector field on M defines a one-parameter family of
symplectomorphisms ofM.

5.1.5 Kirillov–Kostant Structures

Wenowdescribe phase spaceswhose structure is entirely determinedbygroup theory.
They are prototypes for all phase spaces with symmetries.

Kirillov–Kostant Poisson Bracket

Definition Let G be a Lie group with Lie algebra g. Then the Kirillov–Kostant
Poisson bracket on g∗ is defined as

{F ,G} (p) ≡ 〈p, [F∗p,G∗p]〉 (5.23)

where F ,G ∈ C∞(g∗, R) and F∗p denotes the differential of F at p ∈ g∗.7

6Recall that the pullback of a tensor field T of rank k on a manifold N by a map φ : M → N
is defined by (φ∗T )p(v1, . . . , vk) ≡ Tφ(p)(φ∗pv1, . . . ,φ∗pvk) for any p ∈ M and all v1, . . . , vk ∈
TpM.
7F∗p is a linear map from Tpg

∗ ∼= g∗ to TF(p)R ∼= R and therefore belongs to (g∗)∗ ∼= g.
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One can associate a Hamiltonian vector field (5.12) with any function F on a
Poisson manifold. In the present case one has the following result:

Proposition LetF be a real function on g∗, ξF the correspondingHamiltonian vector
field. The associated evolution equation is the Euler–Poisson equation on g∗,

γ̇(t) = (ξF )γ(t) = ad∗
F∗γ(t)

(
γ(t)

)
. (5.24)

Proof Let G be a function on g∗ and take p ∈ g∗. We are going to compute ξF (G) at
p in two different ways. First, (ξF )p is a vector tangent to g∗ at p and may therefore
be seen as an element of g∗ (since g∗ is a vector space). But (ξF )p(G) only depends
on the differential of G at p, so we may write

(ξF )p(G) = 〈
(ξF )p,G∗p

〉
. (5.25)

Secondly, using (5.12) and the bracket (5.23), one has

(ξF )p(G) = −{F ,G} = −〈p, [F∗p,G∗p]
〉 = −〈p, adF∗p (G∗p)

〉 (5.11)= 〈
ad∗

F∗p (p),G∗p
〉
.

Comparing this with (5.25), Eq. (5.24) follows. �

Corollary The symplectic leaves of the Kirillov–Kostant bracket are the coadjoint
orbits of G. In particular, all (finite-dimensional) coadjoint orbits have even dimen-
sion.

Proof By the above proposition, the Hamiltonian vector field ξF associated with a
function F and evaluated at a point p ∈ g∗ is

(ξF )p = ad∗
F∗p (p). (5.26)

Now, given an adjoint vector X ∈ g, we can always find a real functionF on g∗ such
that F∗p = X . Accordingly Eq. (5.26) implies that the integral curves of all possible
Hamiltonian vector fields going through p span the coadjoint orbit of p. �

For future reference it is useful to rewrite the Kirillov–Kostant bracket in terms
of a basis {ta} of g with Lie brackets (5.2). Any adjoint vector can then be written
as X = Xata . If {(ta)∗|a = 1, . . . , n} denotes the corresponding dual basis of g∗, so
that 〈(ta)∗, tb〉 = δab , any coadjoint vector can be written as p = pa(ta)∗ with real
components pa . This defines global coordinates {pa|a = 1, . . . n} on g∗, where each
pa is a real function on g∗ that associates with a coadjoint vector p its component
pa . To apply (5.23) we note that the differential (pa)∗ of pa acts on the basis vectors
∂

∂ pc
according to

(pa)∗
( ∂

∂ pc

)
= ∂ pa

∂ pc
= δca . (5.27)
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But since g∗ is a vector space we can identify Tpg
∗ with g∗ by declaring that ∂/∂ pc

coincides with (t c)∗, so in fact the differential satisfies (pa)∗((t c)∗) = δca . With this
identification the differential (pa)∗ belongs to the dual of the dual, (g∗)∗ = g, and
may be seen as an adjoint vector. Property (5.27) says that this adjoint vector is
precisely ta . The Poisson bracket follows:

{pa, pb} = fab
c pc . (5.28)

In parts II and III we will see that the Poisson brackets of three-dimensional gravity
coincide with Kirillov–Kostant brackets for suitable asymptotic symmetry groups.

Remark The Euler–Poisson equation (5.24) has numerous applications in physics,
particularly when there exists an invertible and self-adjoint “inertia operator” I :
g → g∗.8 Indeed one can then consider a quadratic Hamiltonian function F(p) =
1
2 〈p, I−1 p〉 and Eq. (5.24) becomes γ̇(t) = ad∗

I−1γ(t)γ(t). For G = SO(3) this coin-
cides with the equations of motion of a free rigid body; for the Virasoro group, it
leads to the Korteweg-de Vries equation (see [2] for details).

Kirillov–Kostant Symplectic Form

Since the coadjoint orbits ofG are symplectic leaves of the Kirillov–Kostant Poisson
bracket, they have a symplectic structure given by (5.20):

Definition Let G be a Lie group, p ∈ g∗ a coadjoint vector with orbitWp. Then the
Kirillov–Kostant(-Souriau) symplectic form at q ∈ Wp is given by

ωq(ad
∗
Xq, ad∗

Y q) = 〈q, [X,Y ]〉 (5.29)

where X,Y ∈ g.
Here ad∗

Xq and ad∗
Y q are “infinitesimal displacements” of q and represent generic

tangent vectors ofWp at q. One can verify that (5.29) is closed and non-degenerate
onWp, so it is indeed a symplectic form. In addition it is invariant under the coadjoint
action ofG in the sense that (Ad∗

f )
∗(ω) = ω for all f ∈ G. Thus each coadjoint orbit

of G is a homogeneous space equipped with a G-invariant symplectic structure. In
this sense it is a symmetric phase space. We will see below that, for instance, each
coadjoint orbit of the Poincaré group coincides with the space of classical states of
a relativistic particle with definite mass and (classical) spin.

5.1.6 Momentum Maps

Noether’s theorem states that any classical system with a Lie group of symmetries
possesses conserved quantities. Here we investigate this statement in the framework

8Here self-adjointness means that 〈I(X), Y 〉 = 〈I(Y ), X〉 for any two adjoint vectors X, Y .
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of symplectic geometry.Until the end of this sectionM is understood to be amanifold
acted upon by some group G according to q �→ f · q.
Group Actions and Infinitesimal Generators

Definition Let G × M → M : ( f, q) �→ f · q be a smooth action of a Lie group
G on a manifoldM. Then the infinitesimal generator of the action corresponding to
X ∈ g is the vector field ξX on M defined by

(ξX )q ≡ d

dt

(
et X · q)∣∣t=0 . (5.30)

One can show (see e.g. [1]) that this definition implies

[ξX , ξY ] = −ξ[X,Y ] (5.31)

where the Lie bracket on the left-hand side is that of vector fields, while the bracket
on the right is that of g, given by (5.1).

For example, the representations (5.8) and (5.11) are infinitesimal generators of
the adjoint and coadjoint representations of G, respectively.9 In this language the
tangent space at q of an orbit (3.13) consists of all vectors of the form (ξX )q , where
X spans the Lie algebra g. The flow of ξX is R × M → M : (t, q) �→ et X · q. In
what follows we study group actions where the manifold M is symplectic.

Momentum Maps

Let (M,ω) be a symplecticmanifold. An action ofG onM is symplectic if eachmap
q �→ f · q is a symplectomorphism, in which case G is a symmetry group ofM. If
ξX denotes the infinitesimal generator (5.30) of a symplectic action, then LξX ω = 0.

Definition Let G × M → M : ( f, q) �→ f · q be a symplectic group action. A
momentum map for this action is a smooth map

J : M → g∗ : p �→ J (p) (5.32)

such that, for any X ∈ g,
iξX ω = d

〈
J (·), X 〉 (5.33)

where ξX is the infinitesimal generator (5.30) and 〈J (·), X〉 is the real function
on M that associates with q ∈ M the value 〈J (q), X〉. In the sequel we write
〈J (·), X〉 ≡ JX , to which we also refer as a “momentum map”.

The definition (5.33) can be compared to that of Hamiltonian vector fields,
Eq. (5.19), and is equivalent to the statement

9Property (5.31) does not contradict the fact that the adjoint and coadjoint representations of g are
actual representations, i.e. for example that adX adY − adY adX = ad[X,Y ]. Indeed, the vector fields
in (5.31) are derivations acting on functions onM, while adX and ad∗

X are generally understood as
linear operators acting on g and g∗, respectively.

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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ξX = ξJX = −{JX , ·}. (5.34)

Here ξX is the infinitesimal generator (5.30), while ξJX is the Hamiltonian vector
field associated with the functionJX and {·, ·} is the Poisson bracket (5.20). Thus the
function JX generates the transformation corresponding to X ∈ g in phase space,
in the sense that for any function F ∈ C∞(M) we have {JX ,F} = −ξX (F) =
−δXF . From this observation we can derive an important corollary: if X,Y ∈ g and
if we consider the corresponding functions JX and JY , their Poisson bracket acts on
classical observables according to

{{JX ,JY },F} = {
JX , {JY ,F}}− {

JY , {JX ,F}}
(5.34)= [ξX , ξY ](F)

(5.31)= −ξ[X,Y ](F)
(5.34)= {

J[X,Y ],F
}

(5.35)

where in the first equality we have used the Jacobi identity. Since this property is
true for any function F , it is tempting to remove it from both ends of the equation
and conclude that the momentum map provides a representation of the Lie algebra
g. However, this hasty argument overlooks one crucial possibility, namely the fact
that brackets of momentum maps may include a central term that commutes with all
functions on phase space (see [1] or appendix 5 of [6]). Thus we conclude that:

Proposition Provided phase space is connected, the Poisson algebra of momentum
maps is a representation of the Lie algebra g up to a (classical) central extension:

{JX ,JY } = J[X,Y ] + c(X,Y ) ∀ X,Y ∈ g , (5.36)

for some real two-cocycle c on g. If the phase space has several connected compo-
nents, there may be several different cocycles (one for each connected component).

This statement is equivalent to saying that momentum maps provide a projective
representation of g, or alternatively an exact representation of a central extension of g.
It is the classical analogue of the symmetry representation theorem of Sect. 2.1; it will
be crucial once we use geometric quantization to produce unitary representations. In
parts II and III we will see that the surface charges generating asymptotic symmetries
in gravity provide a shining illustration of this phenomenon.

Remark Not all symplectic group actions have a momentum map, as there may be
no function JX such that (5.34) holds. If such a function exists for each X ∈ g, then
the action does admit a momentum map and is said to be Hamiltonian. Note that, if
J and J ′ are momentum maps for the same group action, then (5.33) implies that
they differ by a constant coadjoint vector (provided M is connected).

Noether’s Theorem

The momentum map gives the conserved quantity J (p) ∈ g∗ associated with each
classical state p ∈ M. As anticipated earlier, coadjoint vectors may thus be seen as
“conserved vectors” for symmetric phase spaces. This interpretation stems from the
following fundamental result:

http://dx.doi.org/10.1007/978-3-319-61878-4_2
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Noether’s theorem Let q �→ f · q be a Hamiltonian action of G on (M,ω) with
momentum map J . Let alsoH ∈ C∞(M) be a classical observable invariant under
G in the sense thatH( f · q) = H(q) for all f ∈ G and all q ∈ M, and let ξH be the
associated Hamiltonian vector field (5.12). Then, for any integral curve γ(t) of ξH
with initial condition γ(0), one has

J
(
γ(t)

) = J
(
γ(0)

)
(5.37)

for any time t belonging to the domain of the curve. In other words the dim g com-
ponents of the coadjoint vectorJ (γ(t)) are conserved when the equations of motion
γ̇ = (ξH)γ are satisfied.

Proof TheHamiltonianH is invariant underG, so d
dtH(et X · p) = 0 for any p ∈ M.

Since any integral curve of ξX takes the form et X · p for some initial condition p,
this is to say that ξX (H) = ξJX (H) = 0, so H is constant along integral curves of
JX ; equivalently, JX is constant along integral curves of ξH. �

In a translation-invariant system the momentum map associates a momentum
vector with any point in phase space. Similarly, in a rotation-invariant system it
coincides with angular momentum. Finally, in a two-dimensional conformal field
theory, it coincides with the stress tensor of a given field configuration. We will
illustrate these statements below. In the remainder of this sectionwe buildmomentum
maps for specific families of symplectic manifolds.

Momentum Maps for Coadjoint Orbits

Let us build a momentum map (5.33) for a coadjoint orbit Wp of some group G,
endowed with the Kirillov–Kostant symplectic form (5.29). First we note that any
pathγ(t) inWp can bewritten asγ(t) = Ad∗

f (t) p for somepath f (t) inG. Ifγ(0) = q
and γ̇(0) = ad∗

Y q for some Y ∈ g, then we find

ωq
(
ad∗

Xq, γ̇(0)
) = ωq

(
ad∗

Xq, ad∗
Y q
) (5.29)= 〈

q, [X,Y ]〉 = 〈
ad∗

Y q, X
〉

for any X ∈ g. Since ad∗
Xq is the infinitesimal generator ξX of the coadjoint action

of G onWp, the far left-hand side of this equation coincides with (iξX ω)q
(
γ̇(0)

)
. As

a consequence the momentum map (5.33) should be such that

〈
ad∗

Y q, X
〉 = d

dt

(〈
J (γ(t)), X

〉)∣∣
t=0 = 〈

J∗q ad∗
Y q, X

〉

for all X ∈ g. This implies that the differentialJ∗q : TqWp → g∗ is just the inclusion,
and determines J up to a constant coadjoint vector. In particular:

Proposition The inclusion of the coadjoint orbit Wp in g∗,

J : Wp ↪→ g∗ : q �→ q, (5.38)
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is a momentummap for the coadjoint action ofG on (Wp,ω)whenω is the Kirillov–
Kostant symplectic form (5.29).

This result implies that the action of a Lie group on its coadjoint orbits is always
Hamiltonian. In fact one can show that any symplectic manifold endowed with a
transitive Hamiltonian action of some group G is a covering space of a coadjoint
orbit of G. In this sense coadjoint orbits are “universal” homogeneous phase spaces.

Note that the momentum map (5.38) automatically realizes g symmetry without
central extensions. Indeed, if X,Y belong to g and if JX ,JY are the corresponding
momentum maps, then at a point p ∈ g∗ we find

{JX ,JY }(p) (5.23)= 〈
p, [(JX )∗p, (JY )∗p]

〉 (5.38)= 〈
p, [X,Y ]〉 = J[X,Y ](p).

This is exactly the statement (5.36) with a vanishing cocycle c. However, one should
keep in mind that the group G itself may be centrally extended.

Momentum Maps for Cotangent Bundles

Proposition Consider a symplectic action of G onM. Let ω = −dθ for some sym-
plectic potential θ. If the group action leaves θ invariant, then

JX ≡ 〈θ, ξX 〉 (5.39)

defines a momentum map (5.32) that satisfies (5.36) with a vanishing cocycle c = 0.

Proof Since the action leaves θ invariant, one has LξX θ = 0 for any X ∈ g. Writing
the Lie derivative as Lξ = d ◦ iξ + iξ ◦ d and using ω = −dθ, this is equivalent
to d〈θ, ξX 〉 = −iξX dθ = iξX ω. One may recognize this as the definition (5.33) of a
momentum map given by (5.39). In order to prove that (5.36) is satisfied with a
vanishing cocycle c, we evaluate the Poisson bracket

{JX ,JY } = 1

2
[ξY 〈θ, ξX 〉 − ξX 〈θ, ξY 〉] = 1

2
ω(ξX , ξY ) − 1

2
〈θ, [ξX , ξY ]〉.

Here ω(ξX , ξY ) = {JX ,JY } by virtue of (5.20) and (5.34), while Eqs. (5.31) and
(5.39) imply that 〈θ, [ξX , ξY ]〉 = −J[X,Y ]. Equation (5.36) follows with c = 0. �

Let us now apply this result to the cotangent bundle T ∗Q of a manifold Q. Let
φ : Q → Q be a diffeomorphism. We define the associated point transformation as

φ̄ : T ∗Q → T ∗Q : (q,α) �→ (
φ−1(q),α ◦ φ∗φ−1(q)

)
. (5.40)

As one can verify, this definition ensures that

φ ◦ π ◦ φ̄ = π (5.41)

where π : T ∗Q → Q is the canonical projection (5.16). Thanks to this property, one
can show (see e.g. [1]) that point transformations are symplectomorphisms:
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PropositionConsider T ∗Qwith the symplectic formω = −dθ, where θ is the canon-
ical one-form (5.17). Letφ : Q → Q be a diffeomorphism and let φ̄ be the associated
point transformation (5.40). Then

(φ̄)∗θ = θ . (5.42)

In particular, point transformations are symmetries of T ∗Q.
Suppose now that there is an action q �→ f · q of a Lie group G on the manifold

Q. For clarity we will also write f · q ≡ σ∗
f (q), where the notation is purposely the

same as in Eq. (4.17). Then one can define an action of G on T ∗Q by

f · (q,α) ≡ (
f · q,α ◦ (σ∗

f −1)∗ f ·q
)
. (5.43)

Proposition (5.42) ensures that this action is symplectic and even preserves the Liou-
ville one-form. Accordingly we can apply (5.39) to build its momentum map:

Proposition A momentum map for (5.43) is provided by the prescription

〈J (q,α), X〉 ≡ 〈α, (ξX )q〉 (5.44)

where ξX is the infinitesimal generator of the action q �→ f · q = σ∗
f (q).

Proof Applying (5.39) to the case at hand, we find a momentum map J given by
〈J (q,α), X〉 = 〈θ(q,α), (ξ̄X )(q,α)〉 where ξ̄X denotes the infinitesimal generator of
(5.43). Then (5.41) implies that π∗(q,α)(ξ̄X )(q,α) = (ξX )q , so (5.44) follows. �

As an application of these results one can show for instance that the momentum
map given by (5.44) for a translation-invariant system is just the standard momentum
vector, while for a rotation-invariant system it yields the angular momentum. See [1].

5.2 Geometric Quantization

Given a symmetric phase space (M,ω), one would like to understand how “quan-
tizing” that system produces unitary representation of the symmetry group. This
section is devoted to an overview of that problem, particularly as applied to coad-
joint orbits. In short, the quantum Hilbert space associated with (M,ω) will consist
of “wavefunctions”, or rather sections of suitable line bundle over M, and will
indeed provide unitary representations provided certain quantization conditions are
satisfied. Our plan is to start by reviewing the technology of line bundles and their
connections, before explaining how it applies to the quantization of symplectic man-
ifolds and discussing the realization of unitary group representations by geometric
quantization. The presentation is condensed and superficial; we refer to [3–5] for a
much more detailed account of the subject.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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5.2.1 Line Bundles and Wavefunctions

The basic idea of geometric quantization is to consider wavefunctions on a symplec-
tic manifold M. These wavefunctions are sections of a complex line bundle over
M. Recall that a fibre bundle is a quadruple (L,M,F ,π) where π : L → M is a
projection andL is locally diffeomorphic to the productM × F , whereM is known
as the base space andF is known as the fibre. A vector bundle is a fibre bundle whose
fibres are diffeomorphic to a vector space.

Definition A complex line bundle L over M is a vector bundle π : L → M whose
fibres are isomorphic to C.

Thus a complex line bundle consists of infinitely many copies of the complex
plane C, one at each point of M, glued together in a smooth way (see Fig. 4.1 with
Op replaced by M). The bundle locally looks like the direct product of M with C.
When this is true globally, i.e. when L is diffeomorphic to M × C, the line bundle
is said to be trivial.

Definition Let π : L → M be a complex line bundle. Then a section of L is a map
� : M → L such that π ◦ � = IdM. The space of sections is denoted �(M,L).

When π : L → M is trivial, the space of sections coincides with the space of
complex-valued functions on M. For example, when M = R

2 is interpreted as the
phase space of a particle on a line, complex functions �(x, p) on R

2 would provide
sections of the trivial line bundle R

2 × C.

Remark If M is a symplectic manifold and L is a line bundle over M, not all
sections of L are eligible as quantum wavefunctions because they depend on too
many arguments. In the exampleM = R

2 just given, sections �(x, p) depend both
on positions and on momenta, which violates the uncertainty principle. This will be
remedied much later by so-called polarization (see Sects. 5.2.2 and 5.2.3).

Connections and Curvature

In order to define quantum operators acting on wavefunctions seen as sections of
a line bundle, we need a prescription for computing derivatives of sections. (For
instance the momentum operator typically reads P = −i∂x .) This requires a notion
of covariant differentiation:

Definition LetL be a complex line bundle overM, VectC(M) the space of complex
vector fields onM. A connection for L is a map

∇ : VectC(M) × �(M,L) → �(M,L) : (ξ, �) �→ ∇ξ�

which is linear on �(M,L) and VectC(M), and satisfies the property ∇F ξ� =
F ∇ξ� as well as the Leibniz rule ∇ξ(F �) = ξ(F)� + F ∇ξ� for any F ∈
C∞(M, C). The linear operator ∇X is known as the covariant derivative along ξ.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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A connection defines a notion of parallel transport and allows one to connect, or
identify, fibres at different points. The extent to which these identifications deform
the fibres as one moves around on the base manifold is measured by the curvature

R : VectC(M) × VectC(M) × �(M,L) → �(M,L)

which is a two-form defined for all ξ, ζ ∈ VectC(M) and any section � by

R(ξ, ζ)� ≡ (∇ξ∇ζ − ∇ζ∇ξ − ∇[ξ,ζ]
)
�. (5.45)

When the curvature vanishes the connection is said to be flat. Any trivial vector
bundle admits a flat connection, but the converse is not true: there exist non-trivial
bundles with flat connections.

Hermitian Structures

Since we eventually wish to interpret sections as wavefunctions, we need to define
their scalar products.

Definition A Hermitian structure on a line bundle L → M is a smooth map

M × �(M,L) × �(M,L) → C : (q,�,�) �→ (
�(q)|�(q)

)
. (5.46)

which is linear in � and antilinear in �.10 Provided M is endowed with a measure
μ, the Hermitian structure can be used to define a space of square-integrable sections
with scalar product (3.7).

Now let L be a complex line bundle over M endowed with a connection ∇ and
a Hermitian structure (5.46). We say that ∇ is Hermitian if it is compatible with the
Hermitian structure in the sense that

ξ · (�|�) = (∇ξ�|�) + (�|∇ξ�) (5.47)

where (�|�) is the function M → C whose value at q is
(
�(q)

∣∣�(q)
)
. Condition

(5.47) is the Hermitian analogue of the condition of metric-compatibility for con-
nections on the tangent bundle. In the realm of quantum mechanics, property (5.47)
will allow us to define self-adjoint operators.

5.2.2 Quantization of Cotangent Bundles

Having introduced the setup, we now return to our original problem of defining a
quantum Hilbert space associated with a symplectic manifold (M,ω). In order for
this definition to qualify as a consistent quantization prescription, the Hilbert space

10The map being “smooth” means that, given any two smooth sections �,�, the assignment q �→
(�(q)|�(q)) is smooth.

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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H must be endowed with an operator algebra that is somehow associated with the
Poisson algebra of classical observables. This association must be a linear map that
sends a function F ∈ C∞(M) on a linear operator F̂ inH , in such a way that

[
F̂ , Ĝ

] = i� {̂F ,G} . (5.48)

Furthermore the constant function F(p) = 1 must be mapped on the identity opera-
tor, i.e. 1̂ = I. Thus, the problem is to find a quantum/classical correspondence that
fulfills these criteria.

The solution turns out to be given by so-called geometric quantization and consists
of two steps: prequantization and polarization. Here we describe these steps for the
simple case of cotangent bundles endowed with the symplectic form (5.18), so that
ω = −dθ. More general symplectic manifolds are treated in Sect. 5.2.3.

Prequantization

As a first attempt at quantization, let us consider the space of complex wavefunctions
onM. Their scalar products are then given by (3.7) where onemay chooseμ to be the
Liouville volume form (5.14). To define a linear correspondence between classical
and quantum observables, one can try to use the Hamiltonian vector fields (5.12):

F ?�−→ F̂ ?= −i� ξF . (5.49)

Here � is an arbitrary (positive) constant, to be identified with Planck’s constant.
Indeed, using (5.13) one verifies that (5.49) satisfies the basic consistency require-
ment (5.48), and is thus at first sight a satisfactory quantization prescription. How-
ever, the problem with (5.49) is that the trivial observable F(p) = 1 is mapped on
the zero operator F̂ = 0 instead of the identity. This inconsistency can be remedied
by improving (5.49) as

F ?�−→ F̂ ?= −i� ξF + F , (5.50)

where the second term on the right-hand side multiplies wavefunctions by F . This
modification ensures that F = 1 is represented by the identity operator, but now
relation (5.48) no longer holds.

We seem to be stuck: how are we to define F̂ in such a way that both condition
(5.48) and the requirement 1̂ = I be satisfied? The way out turns out to be the further
improvement that consists in adding to (5.50) the momentum map (5.39):

F �−→ F̂ = −i� ξF − 〈θ, ξF 〉 + F , (5.51)

where θ is such that ω = −dθ. Indeed, using (5.13) one can verify that the com-
mutators of operators (5.51) close according to (5.48), and furthermore the constant
observable F = 1 is represented, as it should, by the identity operator F̂ = I. Thus,
provided θ exists, the prescription (5.51) is a consistent quantization of the algebra
of classical observables on M.

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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In the present case we are assuming thatM = T ∗Q is a cotangent bundle, so θ is
just the Liouville one-form (5.17) and (5.51) is a globally well-defined differential
operator that quantizes the classical observable F . One says that cotangent bundles
are quantizable. For example, on R

2n with the symplectic form (5.15) the position
and momentum operators given by prequantization are

q̂ j = i�
∂

∂ p j
+ q j , p̂ j = −i�

∂

∂q j
.

Note that (5.51) may be seen as a differential operator

F̂ = −i�∇ξF + F (5.52)

where∇ξ = ξ − i
�
〈θ, ξ〉 is a covariant derivative determinedby the connectionwhose

connection one-form is θ. From this viewpoint the symplectic potential is seen as an
Abelian gauge field onM = T ∗Q, and the corresponding field strength/curvature is
the symplectic form ω = −dθ.

Polarization

Since the symplectic form is exact, the map (5.51) provides a globally well-defined
quantization prescription and our job here is almost done. But there is still a problem:
the would-be wavefunctions � : M → C depend at this stage on all coordinates of
M = T ∗Q. For example, on R

2n we would have � = �(qi , p j ). In particular, in
the current situation one could easily devise a wavefunction with arbitrarily accurate
values of position and momentum, violating Heisenberg uncertainty. The purpose of
polarization is to cure this pathology by cutting in half the number of coordinates on
which wavefunctions are allowed to depend.

In the case of cotangent bundles it is common to declare that polarized wavefunc-
tions only depend on the coordinates of Q, and not on the transverse coordinates in
each fibre T ∗

q Q. On R
2n this would correspond to saying that polarized wavefunc-

tions �(qi ) do not depend on the coordinates p j , which is generally interpreted by
saying that wavefunctions are written “in position space” — although we shall see
below that the analogue of this polarization for semi-direct products leads instead to
the “momentum space” picture of Chap.4. The scalar product of wavefunctions is
obtained by endowing the manifold Q with a measure, resulting in a Hilbert space
of polarized wavefunctions.

Polarization also affects quantum observables since they must preserve the polar-
izationwhile still satisfying the commutation relations (5.48). As a result, the space of
quantizable classical observables is a subset of the full space C∞(M). For instance,
in R

2n with Darboux coordinates qi , p j (i, j = 1, . . . , n), the classical observables
whose quantization preserves the polarization ∂p� = 0 all take the form

F(q, p) = p jF j (q) + G(q) (5.53)

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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for some functions F j , G. Observables which are not of this form do not preserve
the polarization and are therefore not quantizable in this sense. One should keep
in mind, however, that this does not mean that all quantum operators acting in the
polarized Hilbert space are forced to take the form (5.53). Rather, quantizable clas-
sical observables give rise to a vector space of Hermitian quantum operators, and
the full algebra of quantum observables is generated by sums and products of these
operators. For example, the non-relativistic Hamiltonian p̂2 is obtained by squaring
the operator that quantizes the classical observable p, although there exists no quan-
tizable classical observable whose quantization would yield the operator p̂2. In this
way one essentially recovers standard quantum mechanics from the quantization of
the phase space T ∗Q.

5.2.3 Quantization of Arbitrary Symplectic Manifolds*

We now describe geometric quantization without assuming that the symplectic form
is exact. As it turns out, relaxing that assumption leads to serious complications.
Since these subtleties will have very few immediate effects on the remainder of our
exposition, we urge the hasty reader to go directly to Sect. 5.2.4.

As before, the requirement that the commutators of quantum observables satisfy
(5.48) leads to the quantization prescription (5.51), where the one-form θ is such
that ω = −dθ. However, in contrast to cotangent bundles, there is in general no such
one-form on M because ω need not be exact. Thus the best one can do is to treat
(5.51) locally: if {Ui |i ∈ I} is a contractible open cover of M, the Poincaré lemma
ensures that there exist one-forms θi such that

ω|Ui = −dθi ∀ i ∈ I (5.54)

since ω is closed. Then, locally on each Ui , one can define operators

F̂
∣∣
i ≡ −i�ξF − 〈θi , ξF 〉 + F (5.55)

that provide a linear correspondence between classical and quantum observables.
The problem then is to glue together operators defined on different open sets. On any
non-empty intersectionUj ∩Uk one has dθ j = dθk so there exists a function G jk on
Uj ∩Uk such that

θ j − θk = dG jk . (5.56)

Using (5.55) one can then show that the multiplicative operator

�k j ≡ eiGk j/� (5.57)
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(acting on functions on Uj ∩Uk) is such that

F̂
∣∣
k = �k j ◦ F̂

∣∣
j ◦ �−1

k j on Uj ∩Uk (5.58)

for any classical observable F ∈ C∞(M). This result indicates that the action of F̂
on functions depends on whether one defines it onUj or onUk . It is an ambiguity in
the definition of the operator corresponding toF , which threatens the consistency of
the construction based on (5.55). The way out is think of F̂ as a differential operator
acting not on functions, but on sections of a complex line bundle over M. Indeed,
if the line bundle is chosen properly, one may hope that its transition functions for
some local trivialization associated with the open covering {Ui } coincide with the
multiplication maps (5.57), so that the local formula (5.55) provides globally well-
defined differential operators acting on sections.

One is thus led to the problem of determining whether there exists a line bundle
whose transition functions take the form (5.57) for the covering {Ui |i ∈ I}, in such a
way that the operator (5.55) canbewrittenglobally as (5.52) for a connection∇ whose
local connection one-forms are the θi ’s. This can be addressed in the framework of
Čech cohomology, which we will not describe here. The bottom line is that such
a line bundle with such a connection exists if and only if the cohomology class of
ω/2π� is integral in the cohomology space H2

de Rham(M, R), i.e. if

[ ω

2π�

]
∈ H2

de Rham(M, Z). (5.59)

This quantization condition is equivalent to demanding that the integral of ω/2π�

over any closed two-surface be an integer.11 The only quantizable symplectic mani-
folds are those that satisfy this requirement.

The reasonwhywedidnot see this condition in the case of cotangent bundles is that
their symplectic form is globally exact, so that its cohomology class vanishes and the
requirement (5.59) is trivially satisfied. In fact one can show that the curvature two-
form (5.45) of the connection determined by (5.55) is R = iω/�, consistently with
the fact that the curvature of any line bundle is integral. In particular the connection
used to define quantum operators (5.52) for cotangent bundles is flat.

Provided the quantization condition (5.59) is satisfied, one can endow the space
of sections of the line bundle with a Hermitian structure and use it to define the
scalar product (3.7) thanks to the Liouville volume form (5.14). One can show that
the Hermitian structure can always be chosen in a way (5.47) compatible with the
connection determinedbyω, so that all operators (5.55) areHermitian.This completes
the first step of geometric quantization, i.e. prequantization.

As in the case of cotangent bundles, the Hilbert space of sections produced by
prequantization is “too large” in the sense that wavefunctions depend on too many
arguments. Polarization corrects this problem by “cutting in half” the number of
coordinates on which wavefunctions are allowed to depend. Since this procedure

11Here “closed” means “compact without boundary”.

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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will not be directly visible in our later considerations, we skip its presentation and
refer instead to [3, 5] for a much more thorough discussion.

Remark When M is a coadjoint orbit, there exists a simple reformulation of the
integrality condition (5.59). Namely, ifWp

∼= G/Gp is the coadjoint orbit of p ∈ g∗
with stabilizer Gp, the Kirillov–Kostant symplectic form (5.29) is integral if and
only if there exists a character χ of Gp whose differential (at the identity e ∈ G)
satisfies dχe = i

�
j
∣∣
gp
, with gp the Lie algebra of Gp. The textbook example of this

phenomenon is provided by coadjoint orbits of SU(2), which are spheres embedded
in su(2)∗: the quantization condition requires that the radius of such a sphere be an
integer or half-integer multiple of �, corresponding to the statement that highest-
weight representations of su(2) have integer or half-integer “spin”.

5.2.4 Symmetries and Representations

We now combine the results of Sect. 5.1 with the tools of geometric quantization to
address the following question: given a symplectic manifold (M,ω) acted upon by
a group G, does quantization produce a unitary representation of G?

We will assume that the action of G is Hamiltonian, with a momentum map
(5.32). We also assume that we have chosen a certain value for Planck’s constant
� and that ω/2π� is integral in the sense (5.59). Then (M,ω) is quantizable and
prequantization can be carried out independently of the group action. In particular,
for each adjoint vector X ∈ g there is a classical observable JX given by (5.33), and
the corresponding operator (5.52) is

ĴX = −i�∇ξX + JX (5.60)

where we have used property (5.34) to replace ξJX by the infinitesimal generator
(5.30). By virtue of (5.36) the map X �→ ĴX is a homomorphism, possibly up to
a central extension. Thus the assignment (5.60) provides a (generally projective)
representation of the Lie algebra g, acting on a space of sections on M.

The subtlety arises with polarization, since then the wavefunctions of the sys-
tem satisfy extra conditions which may not be preserved by (5.60). To avoid such
pathologies one has to choose a G-invariant polarization. In that case each operator
(5.60) is a well-defined Hermitian operator acting on polarized wavefunctions, and
one obtains a projective, unitary representation of g. It was shown byKostant [7] that,
when the action ofG onM is transitive, the homomorphism X �→ ĴX exponentiates
to a unitary representation of the group G. This is true in particular when M is a
coadjoint orbit [4]. In addition, when G is semi-simple, compact or solvable, the
representations obtained in this way are irreducible. Thus geometric quantization
does produce unitary representations of groups, which is the conclusion we were
hoping to obtain.
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Remark One can discuss semi-classical approximations in symplectic terms, and
this applies in particular to coadjoint orbits. Indeed, the Liouville volume form (5.14)
measures the “size” of portions of phase space and can be used to compare identical
manifolds endowed with different symplectic structures. If ω and λω (with λ > 0)
are two symplectic forms on M, then large λ assigns a larger measure to a given
portion of (M,λω) than to the same portion in (M,ω). In this sense large λ is
a semi-classical regime with respect to (M,ω), with 1/λ playing the role of the
coupling constant. In the case of coadjoint orbits, by linearity,Wp is diffeomorphic
to Wλp for any λ �= 0, but the definition (5.29) ensures that the symplectic form
on Wλp is “larger” (for λ > 1 say) than that on Wp. Thus, for λ large enough the
quantization of Wλp can be treated semi-classically. Note that this intuition breaks
down if the orbit is invariant under scalings, i.e. Wλp = Wp.

5.3 World Lines on Coadjoint Orbits

In this sectionwe reformulate the observations of the previous pages in terms of action
principles and path integrals. In doing sowewill develop a group-theoretic world line
formalism, which will eventually allow us (in Sect. 5.4) to interpret representations
of semi-direct products as actual quantized point particles propagating in space-time.

We will start with general geometric considerations explaining how to associate
an action principlewith any quantizable symplecticmanifold. After a group-theoretic
interlude on the Maurer–Cartan form, we will focus on coadjoint orbits and describe
their world line actions as gauged non-linear Sigma models. Useful references are
[8–10]; see also [11].

5.3.1 World Lines and Quantization Conditions

Our approach here is similar to [12]. Let (M,ω) be a symplectic manifold, p ∈ M.
Since ω is closed, there exists a neighbourhood U of p such that ω|U = −dθ for
some one-form θ onU . Now let γ : [0, 1] → U : t �→ γ(t) be a path in phase space
contained in U . We can associate with it an action

S
∣
∣
U
[γ] ≡

∫

γ

θ = −
∫

γ

d−1ω , (5.61)

where the notation −d−1ω means “whatever one-form θ such that ω = −dθ”. This
is a purely kinematical Hamiltonian action associated with the symplectic form ω.
For example, whenM = R

2n with ω = dqi ∧ dpi = −d(pidqi ), expression (5.61)
is globally well-defined and reads
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S[qi (t), p j (t)] =
∫ 1

0
dt p j (t)q̇

j (t) (5.62)

which is the standard reparameterization-invariant kinetic term of any Hamiltonian
action. There is no term involving p2 or any other combination of q’s and p’s because
there is no Hamiltonian at this stage.

For a generic symplectic form ω the definition (5.61) is not enough: one needs
an action principle that makes sense for any path in M, regardless of exactness. So
let {Ui |i ∈ I} be a contractible open covering ofM such that ω|Ui = −dθi for each
i ∈ I. We can then write an action (5.61) on each Ui , but we can also attempt to
define S[γ] for any path γ by

S[γ] ≡ −
∫

γ

d−1ω . (5.63)

We refer to this functional as the geometric action for (M,ω) evaluated on the path
γ; its definition follows from the geometry ofM. In particular, when a group G acts
onM by symplectomorphisms, the action automatically has global G symmetry. In
Sect. 5.5 we will interpret (5.63) as the action of a point particle in space-time.

The action (5.63) can be evaluated as follows. Given a path γ, we can cover its
image by open sets Uj , with j ∈ J ⊂ I. If only one Uj suffices we can simply use
the original definition (5.61) to evaluate the action. If there are two open sets, sayU1

and U2, then we call γ j the portion of the path γ contained in Uj (for j = 1, 2) and
γ12 the portion contained in U1 ∩U2. We can then define

S[γ] ≡
∫

γ1

θ1 +
∫

γ2

θ2 −
∫

γ12

θ1 (5.64)

where the last term removes the overcounting due to a double integration onU1 ∩U2.
There is a subtlety in this expression: we chose to write ω|U1∩U2 = −dθ1 in the last
term, but we could equally well have chosen ω = −dθ2; this would have given a
different compensating term in (5.64), hence a different value for the action! This
is a problem at first sight, but one may recall that the action as such need not be a
single-valued functional on the space of paths in phase space. The truly important
quantity is the complex number

ei S[γ]/� (5.65)

which determines the path integral measure and leads to transition amplitudes in
the quantum theory. Thus we are free to have a multivalued action as long as all
ambiguities are integer multiples of 2π�. This is in effect a quantization condition
on the parameters of the action.

A simple reformulation of this condition is obtained by considering a closed path
γ (so γ(0) = γ(1)) and evaluating the action along that path. Using Stokes’ theorem
one can write
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S[γ] = −
∮

γ

d−1ω = −
∫

�γ

ω (5.66)

where �γ is a two-surface with boundary γ. As expected this is a multivalued func-
tional of γ. Requiring the exponential ei S[γ] to be single-valued then implies that
the integral of ω over any closed two-surface must be an integer multiple of 2π�,
which is the old Bohr–Sommerfeld quantization condition and coincides with the
integrality requirement (5.59) mentioned above. One can also show, more generally,
that this condition is sufficient to ensure that (5.65) is single-valued on the space of
paths. Thus the quantization condition determined by the action functional (5.63)
coincides with the condition that follows from geometric quantization. This applies,
in particular, to the coadjoint orbits of any Lie group.

Given an action (5.63) that satisfies the quantization condition, one can choose a
Hamiltonian H ∈ C∞(M) and compute transition amplitudes using path integrals
with the action functional

S[γ] = −
∫

γ

d−1ω −
∫ T

0
dt H(γ(t)). (5.67)

Note that this expression is no longer invariant under time reparameterizations for
generic choices of the Hamiltonian function.

Remark The geometric actions (5.63) associated with coadjoint orbits of centrally
extended loop groups describe certain families of Wess–Zumino–Witten models
[10]. In that context the single-valuedness of (5.65) leads to the quantization of the
Kac–Moody level [13–15].

5.3.2 Interlude: The Maurer–Cartan Form

When the phase space M is a coadjoint orbit Wp of a group G, any path γ on Wp

can be written as
γ(t) = Ad∗

f (t) p (5.68)

for some path f (t) in G. Geometric actions such as (5.63) can then be seen as
functionals of paths on a group manifold. This reformulation turns out to rely on the
Maurer–Cartan form of G, which we now study.

Definition Let G be a Lie group and let L f : G → G : g �→ f · g denote left mul-
tiplication by f ∈ G. Then the (left) Maurer–Cartan form on G is

	 f ≡ (L f −1)∗ f . (5.69)

At any point f , the map 	 f is the differential of left multiplication by f −1.
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It follows from (5.69) that the Maurer–Cartan form at f is an isomorphism
between the tangent spaces T f G and TeG, the latter being identified as usual with
the Lie algebra of G. Thus 	 is a g-valued one-form on G and may be seen as a
section of the vector bundle T ∗G ⊗ g. It is also left-invariant in the sense that

L∗
g(	) = 	 (5.70)

for any group element g. When G is a matrix group, any f can be written as a
matrix and the entries of f define local coordinates on G. One can then think of
d f as the matrix whose entries are the differentials of these coordinates, and the left
Maurer–Cartan form can be written as

	 f = f −1 · d f . (5.71)

One can similarly define a right Maurer–Cartan form (R f −1)∗ f , where R denotes
right multiplication (3.17). Its expression for a matrix group is d f · f −1.

Proposition The Maurer–Cartan form (5.69) satisfies the Maurer–Cartan equation

(d	)(ξ, ζ) + [	(ξ),	(ζ)] = 0 (5.72)

for all vector fields ξ, ζ on G, where [·, ·] denotes the Lie bracket (5.1) in g.
Proof Recall that the exterior derivative of 	 is such that, for all vector fields ξ, ζ,

(d	)(ξ, ζ) ≡ ξ · 	(ζ) − ζ · 	(ξ) − 	([ξ, ζ]) , (5.73)

where [·, ·] is the Lie bracket of vector fields. If ξ and ζ are left-invariant, they can
be written as ξg = (Lg)∗e X and ζg = (Lg)∗eY for some adjoint vectors X,Y . Then
(5.69) implies that 	(ξ) = X is constant on g, and (5.73) reduces to

(d	)(ξ, ζ) + 	([ξ, ζ]) = 0. (5.74)

By left-invariance we may write 	([ξ, ζ]) = [	(ξ),	(ζ)] where the bracket on the
right-hand side now is the Lie bracket (5.1) of g. Equation (5.74) then takes the form
(5.72) save for the fact that ξ and ζ are left-invariant. This condition can be relaxed
upon recalling that the span of left-invariant vector fields at a point g ∈ G is the
whole tangent space TgG. �

Kirillov–Kostant from Maurer–Cartan

Thanks to (5.68), the Maurer–Cartan form provides a convenient rewriting of the
Kirillov–Kostant symplectic form (5.29) in terms of vectors tangent to a group man-
ifold. Indeed, let

π : G → Wp : g �→ Ad∗
g(p) (5.75)

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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be the natural projection. We then define a two-form ω on G by

ω ≡ π∗ω (5.76)

where ω is the Kirillov–Kostant symplectic form (5.29). One may think of ω as the
analogue of (5.29) on the group G.

Lemma Let g ∈ G, and consider tangent vectors v,w ∈ TgG. Then

ωg(v,w) = 〈
p, [	g(v),	g(w)]〉 (5.77)

where the bracket on the right-hand side is that of g.

Proof The definition of the two-form (5.76) explicitly reads

(π∗ω)g(v,w) = ωπ(g)(π∗gv,π∗gw)
!= ωg(v,w). (5.78)

We can represent the vector v by a path γ in G such that γ̇(0) = v, so that

π∗g(v) = d

dt

(
π(γ(t))

)∣∣
t=0 = d

dt

(
Ad∗

γ(t)(p)
)∣∣

t=0
. (5.79)

In turnwe canwrite γ = g · γ0(t)where γ0(0) = e is the identity. Then γ̇0(0) belongs
to the Lie algebra TeG = g of G and is given by

γ̇0(0) = d

dt

(
g−1 · γ(t)

)∣∣
t=0 = d

dt

(
Lg−1

(
γ(t)

))∣∣∣
t=0

= (Lg−1)∗g(v)
(5.69)= 	g(v)

(5.80)
where we used v = γ̇(0). We can now use this in (5.79) to obtain

π∗g(v) = d

dt

(
Ad∗

g(Ad
∗
γ0(t)(p))

)∣∣
t=0

(5.11)= Ad∗
g(ad

∗
γ̇0(0) p)

(5.80)= Ad∗
g(ad

∗
	(v) p).

Equation (5.77) follows upon plugging this result (and its analogue for w)
in (5.78). �

Formula (5.77) is sometimes rewritten as

ω = 1

2

〈
p, [	∧, 	]〉 (5.81)

where [	∧, 	] is the g-valued two-form such that [	∧, 	]g(v,w) ≡ 2[	g(v),

	g(w)] for all tangent vectors v,w ∈ TgG. In what follows we call ω the symplectic
form on G since it is related by (5.76) to the Kirillov–Kostant symplectic form (in
particular dω = 0), but one should keep in mind that this terminology is actually
incorrect:
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Lemma The two-form ω is degenerate. Its kernel consists of left-invariant vector
fields ζX for which X belongs to the Lie algebra of the stabilizer of p.

Proof Let v,w ∈ TgG; there are two (unique) adjoint vectors X,Y ∈ TeG = g such
that v = (Lg)∗e X andw = (Lg)∗eY , so that	g(v) = X and similarly forw. Formula
(5.77) can then be rewritten as

ωg(v,w) = 〈
p, [X,Y ]〉 = −〈ad∗

X p,Y 〉. (5.82)

The kernel of ω consists of vectors v = (Lg)∗e X such that (5.82) vanishes for any
Y ∈ g, which is to say that ad∗

X p = 0. The latter property holds if and only if X
belongs to the Lie algebra of the stabilizer of p. �

This lemma confirms that ω is not a symplectic form because its components
do not form an invertible matrix. The rank of ω is dim(G) − dim(Gp), where Gp

is the stabilizer of p. This number coincides (as it should) with the dimension of
the coadjoint orbit of p, which proves by the way that the original form (5.29) on
G/Gp

∼= Wp is invertible.

5.3.3 Coadjoint Orbits and Sigma Models

The “symplectic form” (5.81) is a closed two-form, and is therefore locally exact.
As such it can be used to define a kinetic action functional analogous to (5.63),

S[ f (t)] ≡ −
∫

f (t)
d−1ω, (5.83)

whose argument is a path f (t) in G. Using the Maurer–Cartan equation (5.72) in
(5.77), one can write

ω f = −〈p, d	 f
〉 = −d

(〈
p,	

〉)
f

where the exterior derivative goes through the coadjoint vector p by linearity. Thus
the action (5.83) becomes

S[ f (t)] =
∫

f (t)

〈
p,	

〉 =
∫ T

0
dt
〈
p,	 f (t)

(
ḟ (t)

)〉
. (5.84)

It describes the dynamics of paths f (t) ∈ G and may be seen as the (kinetic piece of
the) action of a non-linear Sigma model. When G is a simple matrix group, adjoint
and coadjoint vectors can be identified so that 〈p, ·〉 = Tr[X ·] for some X ∈ g, and
(5.71) allows us to recast the integrand of (5.84) in the form Tr

[
X f −1 ḟ

]
.

Note that the global G symmetry of (5.84) is manifest: if f (t) is a path in G
and g ∈ G is an arbitrary constant group element, then left-invariance of 	 readily



5.3 World Lines on Coadjoint Orbits 137

implies S[g · f (t)] = S[ f (t)]. In addition (5.84) is the integral of a one-form and
is thus invariant under redefinitions of the time parameter t . As in (5.67) one can
include a Hamiltonian in the action, at the cost of breaking time reparameterization
invariance.

A key subtlety with (5.84) is that the group variable f (t) is the group element that
appears in a coadjoint actionAd∗

f (t) p, as in (5.68). The latter coadjoint vector is invari-
ant under multiplication of f (t) from the right by any (generally time-dependent)
group element h(t) belonging to the stabilizer of p. This means that (5.84) should be
invariant under gauge transformations f (t) �→ f (t) · h(t), and therefore describes
a gauged non-linear Sigma model. Let us check that (5.84) does indeed admit such
a symmetry. Using the Leibniz rule we find

S[ f · h] =
∫ T

0

〈
p,	 f (t)h(t)

(
(Rh)∗ f (t) ḟ (t)

) 〉+
∫ T

0

〈
p,	 f (t)h(t)

(
(L f (t))∗h(t)ḣ(t)

) 〉

(5.85)
where the adjoint vector paired with p in the first term can be rewritten as

	 f (t)h(t)
(
(Rh)∗ f (t) ḟ (t)

) = Adh−1	 f (t) ḟ (t)

thanks to the definitions (5.69) and (5.6). This implies that the first term of (5.85)
coincides with the original action (5.84). As for the second term in (5.85), we use
left-invariance of 	 to rewrite it as a Sigma model action evaluated on a path wholly
contained in the stabilizer Gp:

S[h(t)] =
∫ T

0
dt
〈
p,	h(t)ḣ(t)

〉
. (5.86)

The counterpart of h(t) in the coadjoint orbit of p is the constant path Ad∗
h(t) p = p,

but in the Sigmamodel it carries a generally non-vanishing action (5.86). Thus gauge-
invariance of (5.84) may be true, but is not obvious at this stage since the gauge-
transformed action (5.85) differs from (5.84) by the extra term (5.86). To reconcile
this observation with the much desired gauge-invariance of (5.84), we note that the
exterior derivative of the integrand of (5.86) vanishes. Indeed, for all v,w ∈ ThG p

the Maurer–Cartan equation (5.72) yields

d
〈
p,	

〉
h(v,w) = −〈p, [	h(v),	h(w)]〉 (5.11)= 〈

ad∗
	h(v) p,	h(w)

〉 = 0

where the last equality follows from the fact that 	h(v) belongs to the Lie algebra
of the stabilizer of p. Thus the integrand of (5.86) is closed, and is therefore locally
exact. In particular, for a path h(t) located in a sufficiently small neighbourhood of
the identity in H , there exists a function F(t) such that

〈
p,	h(t)ḣ(t)

〉 = Ḟ(t) (5.87)
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for any t ∈ [0, T ]. The integral (5.86) of this quantity is a boundary term, so the
action functional (5.84) is indeed gauge-invariant, albeit up to boundary terms that
can be cancelled by requiring for instance that initial and final configurations be
fixed.

We stress that this gauge symmetry is unavoidable if (5.84) is interpreted as
the Sigma model version of the action (5.63) on a coadjoint orbit. In particular
the inclusion of a Hamiltonian is now subject to a constraint: in order to reproduce
(5.67), the Hamiltonian expressed in terms of group variablesmust be invariant under
stabilizer gauge transformations.

5.3.4 Coadjoint Orbits and Characters of SL(2,R)*

As an application of the above considerations, we now classify the coadjoint orbits of
SL(2, R) and quantize some of them, showing along the way that they are equivalent
to one-dimensional harmonic oscillators. As an application we evaluate SL(2, R)

characters by geometric quantization. We refer e.g. to [16, 17] for more details on
the coadjoint orbits of SL(2, R), and to [8, 10] for similar computations in more
general cases. This section is not crucial for the remainder of the thesis and may be
skipped in a first reading.

Coadjoint Orbits of SL(2, R)

For the basic properties of the group SL(2, R) we refer to Sect. 4.3. Its Lie algebra
sl(2, R) consists of real, traceless 2 × 2 matrices. Any such matrix is a real linear
combination X = xμtμ of basis elements (4.87) whose brackets read

[tμ, tν] = εμν
ρ tρ . (5.88)

Here εμνρ is the completely antisymmetric tensor such that ε012 = +1, and indices
are raised and lowered using the Minkowski metric ημν = diag(− + +). For future
reference we also note that, in the complex basis

�0 ≡ −t0 , �1 ≡ t2 − i t1 , �−1 ≡ t2 + i t1 , (5.89)

the Lie brackets (5.88) take the form

i[�m, �n] = (m − n)�m+n (5.90)

for m, n = −1, 0, 1. On account of the isomorphism (4.83) this can also be seen as
the Lorentz algebra in three dimensions.

The sl(2, R) algebra has a non-degenerate bilinear form

(X,Y ) ≡ 2 Tr(XY ) = ημνx
μxν (5.91)

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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which is left invariant by the adjoint action (4.89) of SL(2, R). We can then use
the isomorphism (4.42) to intertwine the adjoint and coadjoint representations of
SL(2, R) as in (4.43). In particular we may identify coadjoint with adjoint vectors,
and coadjoint orbits coincide with adjoint orbits under that identification. Those are
exactly the momentum orbits of the Poincaré group in three dimensions, which were
described in Sects. 4.2 and 4.3. This provides the classification of coadjoint orbits of
SL(2, R) and an exhaustive family of orbit representatives is depicted schematically
in Fig. 4.3.

Note that the fact that coadjoint orbits of SL(2, R) coincidewith Poincarémomen-
tum orbits in three dimensions follows from the structure G �Ad gAb of the double
cover (4.93) of the Poincaré group.Wewill encounter a similar structure in the BMS3
group, albeit with an infinite-dimensional group G.

Kirillov–Kostant Symplectic Form

We can write any coadjoint vector of SL(2, R) as q = qμ(tμ)∗ where (tμ)∗ =
ημν(tν, ·) is the dual basis corresponding to (4.87). The components qμ are global
coordinates on sl(2, R)∗ and their Kirillov–Kostant Poisson brackets read

{pμ, pν} = εμν
ρ pρ (5.92)

on account of (5.88) and the general result (5.28). Now consider a “massive” orbit

Wp =
{
qμ(t

μ)∗
∣
∣∣q0 =

√
h2 + q2

1 + q2
2

} ∼= SL(2, R)/U(1) (5.93)

with orbit representative p = h(t0)∗ and stabilizer U(1). We denote the “mass” of
the orbit by h rather than M because its quantization will eventually correspond to
a representation of sl(2, R) with highest weight h (or more precisely h + 1/2). The
restriction of (5.92) to the orbit gives rise to the Kirillov–Kostant symplectic form
(5.29), which we now evaluate.

We can label the points of (5.93) by their “spatial components” (q1, q2). In order to
write down (5.29) in these coordinates, we need a dictionary between the components
xμ of X and those of the corresponding vector field ad∗

Xq in terms of the coordinates
q1, q2. We first evaluate ad∗

Xq for X = xμtμ; using (5.88), for any adjoint vector
Y = yμtμ we find 〈ad∗

Xq,Y 〉 = −〈q, xμyνεμν
ρ tρ〉. For q belonging to (5.93) one

obtains

ad∗
Xq =

(
− q1X

2 + q2X
1
)
(t0)∗ +

(
−
√
h2 + q2

1 + q2
2 X

2 − q2X
0
)
(t1)∗

+
(√

h2 + q2
1 + q2

2 X
1 + q1X

0
)
(t2)∗.

(5.94)

This is an infinitesimal variation of q tangent to Wp. Any such variation can be
expressed in terms of the coordinates (q1, q2): for an infinitesimal variation (δq1, δq2)
of (q1, q2), the variation of q0 on the orbit (5.93) is

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4


140 5 Coadjoint Orbits and Geometric Quantization

δq0 = q1δq1 + q2δq2√
h2 + q2

1 + q2
2

. (5.95)

The variation of q produced by a vector v = v1∂q1 + v2∂q2 tangent to Wp takes the
same form with δqi replaced by vi . Given such a vector v at q one may ask what
Lie algebra element X is such that v = ad∗

Xq. Owing to (5.94) and (5.95) we may
choose

x0 = 0 , x1 = V2√
h2 + q2

1 + q2
2

, x2 = −V1√
h2 + q2

1 + q2
2

. (5.96)

This solution to v = ad∗
Xq is not unique for a given v due to the non-trivial stabilizer

U(1), but it is all we need for evaluating the Kirillov–Kostant symplectic form.
Indeed, using (5.29) and the fact that the orbit (5.93) is two-dimensional, we find

ω = dq2 ∧ dq1√
h2 + q2

1 + q2
2

, (5.97)

which coincides (up to sign) with the Lorentz-invariant volume form (1.6) on the
mass shellWp. One can rewrite it in global Darboux coordinates

P ≡
⎛

⎝
2
√
h2 + q2

1 + q2
2 − 2h

q2
1 + q2

2

⎞

⎠

1/2

q1, Q ≡
⎛

⎝
2
√
h2 + q2

1 + q2
2 − 2h

q2
1 + q2

2

⎞

⎠

1/2

q2

(5.98)

such that (5.97) simply becomes

ω = dQ ∧ dP. (5.99)

Hence the Kirillov–Kostant symplectic form on the orbit (5.93) is globally exact and
the quantization condition (5.59) is trivially satisfied for any value of h.

Characters as Path Integrals

We can now quantize the orbit Wp with the symplectic form (5.99). The associated
line bundle is trivial and its sections are just complex-valued functions on Wp;
polarized sections can be chosen to depend only on the coordinate Q. One can then
evaluate characters of suitable unitary representations of SL(2, R) by computing
traces of operators in the resulting Hilbert space, as follows.

The character of a representation is the trace of the exponential of a certain Lie
algebra generator. When interpreting the latter as a Hamiltonian, the character may
be seen as a partition function. Here we take the Hamiltonian to be the generator
of rotations, corresponding to the basis element t0 in (4.87). As a function on phase

http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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space the Hamiltonian maps the point qμ(tμ)∗ on its component q0, so on the orbit
(5.93) we have

H = 1

�

√
h2 + q2

1 + q2
2 (5.100)

where we have included a prefactor12 �c/� ≡ 1/� to ensure that H has dimensions
of energy (we think of h, qμ as being dimensionless). In Darboux coordinates Q, P ,
we find the Hamiltonian of a harmonic oscillator:

H = h

�
+ 1

2�
(P2 + Q2). (5.101)

Thus the quantization of the orbit Wp with the Hamiltonian (5.100) is a quantum
harmonic oscillator on the line!

This tremendous simplification allows us to evaluate characters. In principle we
could use the path integral formalism, but the operator approach is much simpler
since we know the spectrum of the Hamiltonian. Its eigenvalues are

h + 1/2

�
,
h + 3/2

�
,
h + 5/2

�
, . . . ,

h + 1/2 + n

�
, . . .

each with unit multiplicity. In particular the partition function at temperature 1/β is
that of a harmonic oscillator, e−βh/�/(2 sinh[β/�]). For future reference we rewrite
it as follows: we call L0 the operator that generates rotations so that Ĥ = 1

�
L0, and

we write e−β/� ≡ q. We also allow β to be complex as long as its real part is positive.
Then the partition function can be written as

Tr
(
qL0

) = qh+1/2

1 − q
. (5.102)

In Sect. 8.4.1 we will show that this is the character of a unitary representation of the
sl(2, R) Lie algebra with highest weight h + 1/2. In the present case one can think
of the “1/2” as a quantum correction to the classical weight h.

5.4 Coadjoint Orbits of Semi-direct Products

We now apply the considerations of the previous sections to the semi-direct prod-
ucts13 described in Chap.4. In particular we explain how the induced representations
of Sect. 4.1 emerge from geometric quantization of coadjoint orbits. The plan is as
follows. We first work out general expressions for the adjoint representation, the

12We denote by c the speed of light in the vacuum.
13Here the words “semi-direct product” refer to a group (4.1) with an Abelian vector group A.

http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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Lie bracket and the coadjoint representation of any semi-direct product.14 Then we
expose a general classification of coadjoint orbits, seen as fibre bundles over cotan-
gent bundles of momentum orbits. Finally we turn to geometric quantization and
describe the world line actions associated with coadjoint orbits. The considerations
of this section can be found e.g. in [18], and also in more recent works [19–21]. The
textbooks [22, 23] contain detailed computations and examples.

5.4.1 Adjoint Representation of G � A

We consider a semi-direct product (4.1) with A a vector group. Then the Lie algebra
of G � A is a semi-direct sum

g �� A, (5.103)

where g is the Lie algebra of G and A is its own Lie algebra since it is a vector
group. The symbol� denotes the differential of the action σ at the identity,� : g →
End(A) : X �→ �X , where �X is the infinitesimal generator (5.30) associated with
X :

�X : A → A : α �→ �Xα ≡ d

dt
(σet X α)|t=0 . (5.104)

We will denote elements of (5.103) as pairs (X,α) where X ∈ g and α ∈ A; in the
terminology of (4.6), X is an infinitesimal rotation/boost while α is a translation.

The adjoint representation of G � A is given by (5.6), which yields

Ad( f,α)(X,β)
(4.6)= d

dt

(
f et X f −1,α + tσ f β − σ f et X f −1α

)∣∣∣
t=0

= (
Ad f X,σ f β − �Ad f Xα

)
(5.105)

where the symbol “Ad” on the right-hand side denotes the adjoint representation of
G. (More generally, in case of ambiguous notations, the argument of a group action
determines which group it refers to.) In particular, rotation generators transform
according to the adjoint representation of G, while translations are subject to mixed
transformations involving both the finite action σ and its differential �.

From (5.105) one can read off the Lie bracket in g � A upon using (5.8):

[
(X,α), (Y,β)

] = ([X,Y ], �Xβ − �Yα
)
. (5.106)

The presence of � on the right-hand side justifies calling g � A a semi-direct sum.
Note that, if A was non-Abelian, the second entry on the right-hand side would
include a bracket of generators of A.

14The sequence “group � adjoint � coadjoint” will be ubiquitous in this thesis.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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The structure of the algebra (5.106) can be made more transparent by choosing a
basis. Let ta be a basis of g satisfying the brackets (5.2), and let αi be a basis of A
(here a = 1, . . . , dim g and i = 1, . . . , dim A). Introducing the basis elements

ja ≡ (ta, 0), pi ≡ (0,αi )

that generate the semi-direct sum g � A, the Lie bracket (5.106) yields

[ ja, jb] = fab
c jc , [ ja, pi ] = gai

k pk , [pi , p j ] = 0 (5.107)

where gai
k pk ≡ �ta pi so that the coefficients (ga)i

k are the entries of the matrix
representing the linear operator �ta : A → A in the basis αi . The brackets (5.107)
make the semi-direct structure manifest since the bracket [ j, p] gives p’s while the
bracket [p, p] vanishes on account of the fact that A is Abelian. This structure will
appear repeatedly in this thesis.

5.4.2 Coadjoint Representation of G � A

The space of coadjoint vectors of G � A is the dual of the semi-direct sum (5.103),

g∗ ⊕ A∗. (5.108)

Its elements are pairs ( j, p) where j ∈ g∗ and p ∈ A∗, paired with adjoint vectors
according to 〈

( j, p), (X,α)
〉 = 〈 j, X〉 + 〈p,α〉 (5.109)

where the first pairing 〈·, ·〉 on the right-hand side is that of g∗ with gwhile the second
one pairs A∗ with A. Note that A∗ is precisely the space of momenta (see Sect. 4.1),
while g∗ is dual to infinitesimal rotations and may be seen as a space of angular
momentum vectors. This is consistent with the general interpretation of coadjoint
vectors as conserved quantities (see Sect. 5.1.2) and justifies the notation ( j, p).

The coadjoint representation of G � A acts on the space (5.108). In order to write
it down, it is convenient to introduce the following notation:

Definition The cross product of translations and momenta is the bilinear map A ×
A∗ → g∗ : (α, p) �→ α × p given for any X ∈ g by

〈α × p, X〉 ≡ 〈p, �Xα〉 . (5.110)

The notation is justified by the fact that × coincides with the vector product when
G � A is the Euclidean group in three dimensions.

With this notation the coadjoint action of G � A is given by

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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〈
Ad∗

( f,α)( j, p), (X,β)
〉 (5.10)= 〈

( j, p),Ad( f,α)−1(X,β)
〉

(5.105)= 〈
( j, p),

(
Ad f −1X,σ f −1β + �Ad f −1 Xσ f −1α

) 〉
.

(5.111)

We can use �X (σ f α) = σ f (�Ad f−1 Xα) to rewrite this as

〈
Ad∗

( f,α)( j, p), (X,β)
〉 (5.109)= 〈 j,Ad f −1X〉 + 〈

p,σ f −1β + σ f −1�Xα
〉
. (5.112)

In the first term of the right-hand side we recognize the coadjoint representation
of G; the part of the second term involving β is the transformation law (4.16) of
momenta; the last term involves the cross product (5.110) of σ∗

f p with α. Collecting
all these terms and removing the argument (X,β), we conclude that the coadjoint
representation of G � A is

Ad∗
( f,α)( j, p) = (

Ad∗
f j + α × σ∗

f p , σ∗
f p
)

(5.113)

where we keep the notation σ∗
f p instead of the simpler f · p to avoid confusion. Note

that the coadjoint action of the translation group A affects only angular momenta,
since the transformation of p only involves f ∈ G. The translation α contributes
a term α × σ∗

f p, which for trivial f boils down to the cross product α × p; this
contribution can be identified with a combination of orbital angular momentum and
the centre of mass vector, while the spin angular momentum is contained in Ad∗

f j .
We will return to this interpretation below.

From (5.113) we obtain the coadjoint representation (5.11) of g �� A:

ad∗
(X,α)( j, p) = (

ad∗
X j + α × p , �∗

X p
)
, (5.114)

where �∗
X p ≡ −p ◦ �X . We will use this formula below when dealing with the

Kirillov–Kostant symplectic form.

Remark We shall see in Chap.9 that the space of asymptotically Minkowskian
solutions of Einstein’s equations in three dimensions spans (a subset of) the space of
the coadjoint representation of the BMS3 group. Each metric will then be labelled by
a pair ( j, p), where j and p are certain functions on the celestial circle that can be
interpreted as the angular momentum aspect and the Bondi mass aspect, respectively.

5.4.3 Coadjoint Orbits

Let us now classify the coadjoint orbits of a semi-direct product. This may be seen
as a classification of all classical particles, analogous to the quantum classification
worked out in Sect. 4.1. The coadjoint orbit of ( j, p) is the set

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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W( j,p) = {
Ad∗

( f,α)( j, p)
∣∣( f,α) ∈ G � A

}
(5.115)

embedded in g∗ ⊕ A∗, with Ad∗
( f,α)( j, p) given by (5.113). In order to classify all

such orbits, we will assume that the orbits (4.18) and little groups (4.19) of induced
representations are known. Due to the second entry of the right-hand side of (5.113),
involving only σ∗

f p, eachW( j,p) is a fibre bundle over the orbitOp. The fibre above
q = σ∗

f p is the set

{ (
Ad∗

gAd
∗
f j + α × q, q

) ∣∣∣g ∈ Gq , α ∈ A
}

.

It remains to understand the geometry of these fibres and the relation between fibres at
different points. Note that in the degenerate case p = 0 the orbitW( j,0) is simply the
coadjoint orbit of j underG; in particularW(0,0) contains only one point.Accordingly
we take p �= 0 until the end of this section.

Warm-Up: Scalar Orbits

We start by describing scalar orbits, that is, coadjoint orbits that contain points with
vanishing angular momentum j = 0. The terminology is justified by the fact that
each orbit is a homogeneous phase space invariant underG � A, whose quantization
yields the Hilbert space of a particle transforming under a unitary representation of
G � A. Saying that an orbit contains points with j = 0 then means that there exists
a frame where the particle’s spin vanishes, i.e. that the particle is scalar.

So let us describe an orbitW(0,p). With j = 0 the first entry of the right-hand side
of (5.113) reduces to

α × σ∗
f p. (5.116)

Keeping q = σ∗
f p fixed, the set spanned by angular momenta of this form is

A × q ≡ {α × q|α ∈ A} ⊂ g∗ (5.117)

and coincides with the set of orbital angular momenta that can be reached by acting
with translations on a particle with momentum q. The geometric interpretation of
(5.117) is as follows. Recall first that the tangent space of Op at q can be identified
with the space of “small displacements” of q generated by infinitesimal boosts:

TqOp = {
�∗

Xq
∣∣X ∈ g

} ⊂ A∗. (5.118)

Here �∗
Xq = 0 if and only if X belongs to the Lie algebra gq of the little group Gq ,

so (5.118) is isomorphic to the coset space g/gq . It follows that the cotangent space
T ∗
q Op at q is the annihilator of gq in g∗,

T ∗
q Op = g0q ≡ {

j ∈ g∗∣∣〈 j, X〉 = 0 ∀ X ∈ gq
} ⊂ g∗ , (5.119)

which provides the sought-for interpretation:

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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Lemma The cotangent space (5.119) coincides with the set (5.117):

T ∗
q Op = g0q = A × q. (5.120)

Proof Let X ∈ g be an infinitesimal rotation leaving q invariant, i.e. �∗
Xq = 0. One

then has 〈α × q, X〉 = 0 for any translationα, soα × q belongs to the annihilator g0q .
By (5.119) this implies that the span A × q is contained in T ∗

q Op. To prove (5.120)
we need to show the opposite inclusion, i.e. that any element of the annihilator g0q
can be written as α × q for some α ∈ A. To see this, consider the linear function

τq : A → g0q : α �→ α × q (5.121)

mapping a translation on the associated orbital angular momentum. The rank of this
map is dim(A) − dim[Ker(τq)], where

Ker(τq) = {
α ∈ A

∣∣〈�∗
Xq,α〉 = 0 ∀ [X ] ∈ g/gq

}
. (5.122)

The elements of this kernel are translations constrained by dim(g) − dim(gq) inde-
pendent conditions (the subtraction of dim(gq) comes from the quotient by gq ). This
implies that dim[Ker(τq)] = dim(A) − dim(g) + dim(gq), from which we conclude
that the rank of τq is

dim[Im(τq)] = dim(g) − dim(gq) = dim(g0q).

It follows that τq is surjective, which was to be proven. �

We have just shown that the span (5.117) at each q ∈ Op is the cotangent space
ofOp at q. Since j = 0, this analysis exhausts all points ofW(0,p) and we conclude
that

the scalar coad joint orbi ts o f G � A
are cotangent bundles o f momentum orbits.

(5.123)

In mathematical terms we would write W(0,p) = T ∗Op. In particular, if we have
classified all momentum orbits of G � A, then we already know the classification of
all scalar coadjoint orbitsW(0,p). Note that the map (5.121) allows us to express the
stabilizer of (0, p) in a compact way: it is a semi-direct product

Stabilizer of ( j, p) = Gp � Ker(τp) (5.124)

where Gp is the little group of p.

Spinning Orbits

We now turn to spinning orbits, which generally contain no point with vanishing
total angular momentum. To begin, we pick a coadjoint vector ( j, p) and restrict our
attention to rotations f that belong to the little group Gp. The resulting span is



5.4 Coadjoint Orbits of Semi-direct Products 147

{ (
Ad∗

f j + α × p, p
) ∣∣
∣ f ∈ Gp, α ∈ A

}
(5.125)

and is a subset of the full orbit (5.115). In general Ad∗
f ( j) �= j because the little group

Gp need not be included in the stabilizer of j for the coadjoint action of G. Noting
that the cross product (5.110) satisfies the property Ad∗

f (α × p) = σ f α × σ∗
f p, and

using the fact that f fixes p, we rewrite (5.125) as

{ (
Ad∗

f ( j + β × p) , p
) ∣∣ f ∈ Gp, β ∈ A

}
(5.126)

where β is related to the α of (5.125) by β = σ f −1α. In particular we have

Stabilizer of ( j, p) = (G j ∩ Gp) � Ker(τp) (5.127)

where G j is the stabilizer of j for the coadjoint action of G and all the remaining
notation is as before. This extends (5.124) to the case j �= 0.

The rewriting (5.126) allows us to see that translations along β can modify at will
all components of j that point along directions in the annihilator g0p. The only piece
of j that is left unchanged by the action of translations is its restriction to gp,

j
∣
∣
gp

≡ jp . (5.128)

Accordingly the set (5.126) is diffeomorphic to a product

{
Ad∗

f jp| f ∈ Gp
}

︸ ︷︷ ︸
W jp

×{α × p|α ∈ A}
︸ ︷︷ ︸

T ∗
pOp

, (5.129)

where we recognize the cotangent space (5.120) and where W jp ⊂ g∗
p denotes the

coadjoint orbit of jp ∈ g∗
p under the little group Gp. This is in fact our main con-

clusion: when W( j,p) is seen as a fibre bundle over Op, the fibre at p is a product
(5.129) of the cotangent space of Op at p with the coadjoint orbit of the projection
jp of j under the action of the little group of p.

Inspecting (5.129), note in particular how the little group orbit W jp factorizes
from the cotangent space A × p due to translations. This splitting is reminiscent of
the representation (4.28) of Gp � A, where the operators representing f ∈ Gp and
α ∈ A live on very different footings (and actually commute). Recall thatwe used this
representation to induce an irreducible representation (4.29) of the full groupG � A.
What we see in (5.129) is the classical analogue of this little group representation;
upon quantization, the sub-orbit (5.129)will precisely produce a representation of the
form (4.28), and its extension to the full orbitW( j,p) will correspond to the induction
(4.29). In particular the projection (5.128) is a classical definition of spin. We shall
return to this below.

The arguments that led from (5.125) to the result (5.129) can be run at any other
point q on Op, except that the little group is Gq instead of Gp. Thus the fibre above

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4


148 5 Coadjoint Orbits and Geometric Quantization

any point q = σ∗
f p ∈ Op is a product of the cotangent space ofOp at q with the Gq -

coadjoint orbit W(Ad∗
f j)q , where (Ad∗

f j)q denotes the restriction of Ad∗
f j to gq . But

little groups at different points ofOp are isomorphic: if one chooses standard boosts
gq ∈ G such that σ∗

gq
(p) = q, then Gq = gq · Gp · g−1

q and gq = Adgqgp. Therefore
W(Ad∗

f j)q is diffeomorphic to W jp for any q = σ∗
f p ∈ Op; the relation between the

fibres above q and p is given by the coadjoint action of G � A.

Classification of Coadjoint Orbits

The conclusions of the previous paragraph can be used to classify the orbits ofG � A.
We start with some terminology:

Definition Let ( j, p) be a coadjoint vector of the semi-direct product G �σ A. The
corresponding bundle of little group orbits is

B( j,p) ≡
{(

(Ad∗
f j)σ∗

f p,σ
∗
f p
)∣∣∣ f ∈ G

}
. (5.130)

According to our earlier observations, the bundle of little group orbits associated
with ( j, p) is really the same as the coadjoint orbitW( j,p), except that the cotangent
spaces at each point ofOp are “neglected” since translations do not appear in (5.130).
Thus B( j,p) is a fibre bundle over Op, the fibre Fq at q ∈ Op being a coadjoint orbit
of the little group Gq . The relation between fibres at different points of Op is given
by the coadjoint action of G � A, or explicitly

(k, q) ∈ Fq iff ∃ f ∈ G such that k = (
Ad∗

f j
)
q
and q = σ∗

f p.

Conversely, suppose that two elements p ∈ A∗ and j0 ∈ g∗
p are given. The group G

can be seen as a principal Gp-bundle overOp, equipped with a natural Gp-action by
multiplication from the left in each fibre. In addition Gp acts on the coadjoint orbit
W j0 , so one can define an action of Gp on G × W j0 by

( f, k) ∈ G × W j0

g∈Gp�−→ (
g · f,Ad∗

g(k)
)
.

The corresponding bundle of little group orbits is defined as the associated bundle

B( j0,p) ≡ (
G × W j0

)
/Gp. (5.131)

Thus one can associate a bundle of little group orbits (5.130) with each coadjoint
orbit of G � A; conversely, starting from any bundle of little group orbits as defined
in (5.131), one can build a coadjoint orbit of G � A by choosing any j ∈ g∗ such
that jp = j0 and taking the orbitW( j,p). In other words the classification of coadjoint
orbits of G � A is equivalent to the classification of bundles of little group orbits
[18, 20].

These arguments yield the complete picture of coadjoint orbits of G � A:
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the coad joint orbi t W( j,p) is a f ibre bundle over Op, where
the f ibre at q ∈ Op is a product o f the cotangent space T ∗

q Op

wi th a coad joint orbi t o f the li t tle group Gq .

(5.132)

Equivalently,W( j,p) is a fibre bundle over the cotangent bundle T ∗Op, the fibre above
(q,α × q) ∈ T ∗Op being a coadjoint orbit of Gq . To exhaust all coadjoint orbits of
G � A, one can proceed as follows:

1. Pick an element p ∈ A∗ and compute its momentum orbit Op under the action
σ∗ of G; let Gp be the corresponding little group.

2. Pick jp ∈ g∗
p and compute its coadjoint orbit under the action of Gp.

The set of all orbits Op and of all coadjoint orbits of the corresponding little groups
classifies the coadjoint orbits of G � A. Put differently, suppose one has classified
the following objects:

1. The orbits of G for the action σ∗, with an exhaustive set of orbit representatives
pλ ∈ A∗ and corresponding little groups Gλ, with λ ∈ I some index such that
Opλ

and Opλ′ are disjoint whenever λ �= λ′;
2. The coadjoint orbits of each Gλ, with an exhaustive set of orbit representatives

jλ,μ ∈ g∗
λ, μ ∈ Jλ being some index such thatW jλ,μ

andW jλ,μ′ are disjoint when-
ever μ �= μ′.

Then the set { (
jλ,μ, pλ

)∣∣λ ∈ I,μ ∈ Jλ

} ⊂ g∗ ⊕ A∗ (5.133)

is an exhaustive set of orbit representatives for the coadjoint orbits of G � A. The
(generally continuous) indices λ,μ label the orbits uniquely. This algorithm is a
classical analogue of the classification of representations described in Sect. 4.1, since
it classifies the phase spaces of all “particles” associated with G � A.

5.4.4 Geometric Quantization and Particles

We now describe the quantization of coadjoint orbits of semi-direct products and
argue that it yields Hilbert spaces of one-particle states as described in Chap. 4.

A Remark on Cotangent Bundles

Before studyingquantizationwebrieflydigress on cotangent bundles and their canon-
ical symplectic form ω = −dθ, where θ is the Liouville one-form (5.17). Our goal is
to rewrite the symplectic form on T ∗Q in a simpler way. For a sufficiently small open
neighbourhood U of q ∈ Q, the preimage π−1(U ) is diffeomorphic to the product
U × T ∗

q Q. Hence the tangent space T(q,α)T ∗Q can be written as a direct sum

T(q,α)T
∗Q ∼= TqQ ⊕ TαT

∗
q Q ∼= TqQ ⊕ T ∗

q Q (5.134)

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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which justifies writing its elements as V = (v,β), where v ∈ TqQ and β ∈ T ∗
q Q.

The differential of (5.16) at (q,α) then reads π∗(q,α)(v,β) = v and the Liouville
one-form (5.17) reduces to

θ(q,α)(v,β) = 〈α, v〉. (5.135)

Accordingly one finds that the canonical symplectic form ω = −dθ is

ω(q,α) ((v,β), (w, γ)) = 〈γ, v〉 − 〈β, w〉 (5.136)

which is just a more intrinsic rewriting of the standard ω = dq ∧ dp. As we now
show, this reformulation is useful for coadjoint orbits of semi-direct products.

Quantization

Suppose we wish to quantize a coadjoint orbitW( j,p) of G � A; let ω be its Kirillov–
Kostant symplectic form (5.29). Since the Lie bracket in g � A is (5.106), the sym-
plectic form evaluated at the point

(
Ad∗

f j + α × q, q
) ≡ (κ, q) inW( j,p) reads

ω(κ,q)

(
ad∗

(X,β)(κ, q), ad∗
(Y,γ)(κ, q)

) =
= 〈

Ad∗
f j, [X,Y ]〉+ 〈

α × q, [X,Y ]〉+ 〈
γ × q, X

〉− 〈
β × q,Y

〉
.

(5.137)

In the two last terms of this expression we recognize the Liouville symplectic form
(5.136) on the cotangent bundle T ∗Op when α × q is seen as an element of T ∗

q Op

thanks to (5.120). On the other hand the first term of (5.137) looks like the natural
symplectic form (5.29) on the G-coadjoint orbit of j . In particular, when X and
Y belong to the Lie algebra gq of the little group at q, the second term in (5.137)
vanishes and the first one reduces to

〈
Ad∗

f j, [X,Y ]〉 = 〈
(Ad∗

f j)q , [X,Y ]〉

whereweuse the notation (5.128). This is the natural symplectic formon the coadjoint
orbitW(Ad∗

f j)q , so if we seeW( j,p) as a fibre bundle over T ∗Op with typical fibreW jp ,
restricting the symplectic form (5.137) to a fibre gives back the symplectic formon the
little group’s coadjoint orbit. This observation actually follows from a more general
result, which states that the coadjoint orbits of a semi-direct product are obtained
by symplectic induction from the coadjoint orbits of its little groups. Symplectic
induction is the classical analogue of the method of induced representations that
yields irreducible unitary representations of semi-direct products. We will not dwell
on the details of this construction and refer e.g. to [20, 24] for a much more thorough
treatment.

For quantization to be possible, the symplectic form (5.137)must be integral in the
sense (5.59). But the Liouville two-form (5.136) is exact, so its de Rham cohomology
class vanishes and demanding that (5.137) be integral reduces to demanding inte-
grality of the symplectic form on the coadjoint orbit of the little group. We conclude
(see e.g. [21] for the proof):
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Theorem Let G � A be a semi-direct product, ( j, p) a coadjoint vector with coad-
joint orbit W( j,p). Then W( j,p) is prequantizable if and only if the corresponding
Gp-coadjoint orbit W jp is prequantizable.

Provided the little group orbit W jp is quantizable, one obtains a unitary repre-
sentationR of the little group Gp acting on polarized sections of a line bundle over
W jp . These sections are spin states; as in Sect. 4.1, we denote their Hilbert space by
E . Upon declaring that the polarized sections on T ∗Op depend only on the coordi-
nates of the momentum orbitOp, polarized sections on the whole orbitW( j,p) can be
seen as E-valued wavefunctions in momentum space. Assuming that there exists a
quasi-invariant measureμ onOp, the Hilbert spaceH obtained by quantizingW( j,p)

becomes a tensor product (3.8) of E with the space of square-integrable functions
Op → C. This exactly reproduces the construction of Sect. 4.1.

Recovering Induced Representations

As the last step of quantization, we nowneed to understand how the groupG � A acts
on polarized sections, or equivalently what differential operators represent the Lie
algebra g � A on sections. Recall that these operators take the general form (5.60)
where J is a momentum map (5.33) while ξX is an infinitesimal generator (5.30) for
the Lie algebra element X . In the present case X is replaced by a pair (X,α) ∈ g � A.
Furthermore, since the phase space is a coadjoint orbit, the momentum map is an
inclusion (5.38) and the infinitesimal generator is ξ(X,α) = ad∗

(X,α).
Let us describe this inmore detail in the scalar case j = 0, so thatW(0,p) = T ∗Op.

Then the Kirillov–Kostant symplectic form coincides with the canonical symplectic
form on T ∗Op and the operator (5.60) representing a Lie algebra element (X,α) is

Ĵ(X,α)

∣∣∣
(β×q,q)

= −i� ad∗
(X,α)(β × q, q) + 〈q,α〉

when evaluated at a point (β × q, q) belonging to T ∗Op. Polarized sections are func-
tions � : W(0,p) → C : (β × q, q) �→ �(q) since they only depend on momenta
q ∈ Op. Upon acting on such a function the operator Ĵ(X,α) yields

Ĵ(X,α) · �(q) = −i� (�∗
Xq) · � + 〈q,α〉�(q) (5.138)

where �∗
Xq ∈ TqOp acts on � according to

(�∗
Xq) · � ≡ − d

dt
�(σ∗

e−t X q)

∣∣
∣
t=0

.

Thus all observables Ĵ(X,α) are polarized and can be quantized so as to satisfy (5.48).
Formula (5.138) describes the action of Hermitian operators Ĵ(X,α) on wavefunc-

tions � : Op → C, provided the measure μ on Op is invariant under G. It can be
rewritten as

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_3
http://dx.doi.org/10.1007/978-3-319-61878-4_4


152 5 Coadjoint Orbits and Geometric Quantization

(
Ĵ(X,α) · �

)
(q) = i�

d

dt

[
e−i〈q,tα〉/� �(e−t X · q)

]∣∣∣
t=0

and thus corresponds by differentiation to the finite transformation law

(
T [( f,α)]�)(q) = e−i〈q,α〉/� �( f −1 · q) (5.139)

where the map T is a representation of G � A such that

T
[
(et X , tα)

] = exp

[
− i t

�
Ĵ(X,α)

]
.

When the measure μ onOp defining the scalar product of wavefunctions is invariant
under G, formula (5.139) is a unitary representation of G � A that coincides (up to
a sign due to different conventions) with a scalar induced representation (4.30). We
have thus recovered induced representations by quantization! The argument can be
generalized to spinning representations and to quasi-invariant measures [21, 24],
although we will not prove it here. Thus we conclude:

Theorem Let G � A be a semi-direct product, W( j,p) one of its coadjoint orbits.
Then the unitary representation of G � A obtained by geometric quantization of
W( j,p) is an induced representation of the form (4.30) with momentum orbitOp and
spin jp.

Remark This theorem says nothing about the exhaustivity of the procedure: it does
not guarantee that all induced representations can be obtained by quantization. In
fact it is easy to work out explicit examples where certain induced representations
cannot follow from geometric quantization, for instance if the little group is not
connected. In this sense geometric quantization is somewhat weaker than the full
theory of induced representations exposed in Sect. 4.1.

5.4.5 World Lines

Geometric actions for semi-direct products can be obtained following the general
method described in Sect. 5.3. As we now show they can be interpreted as world line
actions describing themotion of a point particle (generally with spin) in “space-time”
A. We will rely on the Sigma model picture (5.84).

We start by evaluating the leftMaurer–Cartan form (5.69) for a semi-direct product
with multiplication (4.6). In order to describe a vector tangent to G � A at the point
( f,α), consider a path in G � A given by

γ(t) = (
g(t),β(t)

)
(5.140)

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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with g(0) = f , β(0) = α and γ̇(0) ≡ v. Using the group operation (4.6) in G � A,
we then find

	( f,α)(v)
(5.69)= d

dt

[(
f −1g(t),σ f −1β(t) − σ f −1α

)]∣∣
∣
t=0

= (
	 f ⊕ σ f −1

)
(v) ,

(5.141)
where on the far right-hand side	 denotes theMaurer–Cartan form onG. The direct
sum refers to the fact that the tangent space T( f,α)(G � A) is isomorphic to T f G ⊕ A.
Using (5.141) we can now write the Sigma model action (5.84) associated with the
orbit of a coadjoint vector ( j, p) ∈ g∗ ⊕ A∗:

S[ f (t),α(t)] (5.109)=
∫ T

0
dt
〈
j,	 f (t)( ḟ (t))

〉+
∫ T

0
dt
〈
σ∗

f (t) p, α̇(t)
〉
. (5.142)

This can be recast in intrinsic terms as

S[ f (t),α(t)] =
∫

f (t)

〈
j,	

〉+
∫

( f (t),α(t))

〈
σ∗ p, dα

〉
(5.143)

where 〈σ∗ p, dα〉 is the one-form on G � A that gives 〈σ∗
f p,β〉 when evaluated at

( f,α) and acting on a vector (v,β). Note that this is just the sum of the Sigma model
action (5.84) on G with a purely kinetic scalar action functional

Sscalar[ f (t),α(t)] =
∫

( f (t),α(t))

〈
σ∗ p, dα

〉
(5.144)

describing a point particle propagating in A along a pathα(t)withmomentum q(t) =
σ∗

f (t) p. In particular the group A is now interpreted as “space-time”. Expression
(5.144) also has a gauge symmetry with gauge group (5.124), and it is invariant under
redefinitions of the time parameter. As in (5.67), adding a Hamiltonian generally
spoils reparameterization symmetry. In the example of the Poincaré group below
the condition p(t) ∈ Op will be a constraint generating time reparameterizations.
Note that this condition only applies to momenta q(t) ∈ A∗, while the position of
the particle, α(t) ∈ A, is completely unconstrained.

5.5 Relativistic World Lines

In this section we study coadjoint orbits of Poincaré groups and show that the cor-
responding geometric actions describe world lines of relativistic particles. At the
end we also turn to Galilean world lines and show that the corresponding partition
functions coincide with Bargmann characters. These topics have been studied pre-
viously in a number of references. The papers [25, 26] deal with the classification
problem (see also [27]); the books [28–30] describe particles in terms of quantization

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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of Poincaré coadjoint orbits; finally the papers [31–34] describe the relation between
world line actions and propagators of relativistic fields.

5.5.1 Coadjoint Orbits of Poincaré

The classification of coadjoint orbits of the Poincaré group is an application of the
general algorithm described in Sect. 5.4.3: all of them are fibre bundles over momen-
tum orbits, the fibre being a coadjoint orbit of the corresponding little group. Since
momentum orbits have been classified in Sect. 4.2, the classification of coadjoint
orbits is straightforward. Quantizing any coadjoint orbit yields an irreducible, unitary
representation of the Poincaré group, i.e. the Hilbert space of a relativistic particle.

As an example consider the (double cover of the) Poincaré group in three dimen-
sions, (4.93). Its momentum orbits coincide with SL(2, R) coadjoint orbits, and the
little groups are stabilizers of SL(2, R) coadjoint vectors. All stabilizers are one-
dimensional and Abelian, except for the trivial orbit whose little group is SL(2, R).
This implies that all Poincaré coadjoint orbits are cotangent bundles of momentum
orbits, except in the case p = 0 for which W( j,0) coincides with the coadjoint orbit
of j under SL(2, R). The set of coadjoint orbit representatives for Poincaré can be
obtained by following the algorithm outlined above (5.133).

5.5.2 Scalar World Lines

Let us consider a massive scalar coadjoint orbit of the Poincaré group in space-time
dimension D. We wish to work out the corresponding Sigma model action (5.144).
We refer to [31–34] for a similar approach and for spinning generalizations.

The action principle describing a scalar world line is (5.144).We choose a basis eμ

of R
D such that each translation can be written as α = αμeμ. The dual basis consists

of momenta (eμ)∗ such that 〈p,α〉 = pμα
μ for p = pμ(eμ)∗. The argument of the

action functional (5.144) is a path in G � A, which we denote ( f (τ ), x(τ )) in order
to distinguish the time parameter τ along the world line from the time coordinate
t = x0. With the coordinates pμ just described we have

(
σ∗

f (τ ) p
)
μ ≡ pμ(τ ) for some

orbit representative p, and the action becomes

S[p(τ ), x(τ )] =
∫ T

0
dτ pμ(τ )ẋμ(τ ) with a constraint pμ(τ )pμ(τ ) = −M2 ∀ τ ,

where indices are raised and lowered using the Minkowski metric. The constraint
accounts for the fact that momenta must belong to a massive orbit. It can be incor-
porated in the action thanks to a Lagrange multiplier N (τ ):

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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S[p(τ ), x(τ ), N (τ )] =
∫ T

0
dτ
[
pμ(τ )ẋμ(τ ) − N (τ )

(
pμ(τ )pμ(τ ) + M2

) ]
.

(5.145)
The equations of motion enforce the constraint

φ ≡ pμ p
μ + M2 = 0 (5.146)

and describe a point particle propagating in space-time with constant momentum:

ṗμ = 0, ẋμ = 2Npμ. (5.147)

Note how the non-trivial dynamics emerges from the fact that momenta span an orbit,
even though we haven’t included any Hamiltonian.

To rewrite (5.145) in Lagrangian form, we use the second equation of motion in
(5.147) to express momenta in terms of velocities:

pμ = ẋμ

2N
. (5.148)

Contracting this with pμ and using the mass shell constraint (5.146) then gives

− M2 = ẋμ ẋμ

4N 2
. (5.149)

Since our goal is to describe a massive particle, its trajectory must be time-like so we
require that ẋμ remains inside the light-cone at any time τ , which gives ẋμ ẋμ < 0.
This implies that (5.149) has two real solutions N ; we choose the positive one,

N =
√−ẋμ ẋμ

2M
. (5.150)

Together with (5.148) this defines an invertible Legendre transformation from the
space of positions and velocities {(xμ, ẋμ)} to the space of positions and constrained
momenta supplemented with a Lagrange multiplier,

{
(xμ, pμ, N )

∣∣
∣x ∈ R

D, p ∈ R
D such that p2 = −M2, N > 0

}
.

Upon expressing p and N in terms of ẋ thanks to this correspondence, the Hamil-
tonian action (5.145) can be rewritten as

S[x(τ ), ẋ(τ )] = −M
∫ T

0
dτ
√−ẋμ ẋμ. (5.151)
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This is an action functional describing the dynamics of a scalar relativistic particle,
with the Lagrangian −M

√−ημν ẋμ ẋν . We have thus recovered the metric structure
of space-time from the coadjoint orbits of its isometry group.

One can also run the argument in reverse and recover the Hamiltonian action
from the Lagrangian one. In doing so one discovers that the mass shell condition is a
primary constraint generating time reparameterizationswhile N (τ ) is a lapse function
along the world line. The canonical Hamiltonian then readsH = 2N (p2 + M2) and
vanishes on the constraint surface, as usual for generally covariant systems.

Remark Starting from the Hamiltonian action (5.145), one can evaluate the asso-
ciated transition amplitude as a path integral. This computation was performed in
[31–34] and the result turns out to coincide with the Feynman propagator of a free
scalar field with mass M . This observation is one of the starting points of the world
line formalism of quantum field theory [35–37], where scattering amplitudes are
reformulated in terms of point particles propagating in space-time.

5.5.3 Galilean World Lines*

Here we study coadjoint orbits of the Bargmann group (4.103) and write down world
line actions for scalar non-relativistic particles. We also show how these actions
account for Bargmann characters.

Scalar World Lines

The classification of coadjoint orbits of the Bargmann group follows from the general
considerations of Sect. 5.4.3, combined with the classification of momentum orbits
and little groups described in Sect. 4.4. In what follows we study the geometric action
associated with one such coadjoint orbit with mass M > 0 and spin j = 0. The orbit
then is a cotangent bundle T ∗Op, where Op is a massive momentum orbit (4.115).
The corresponding representation describes a scalar non-relativistic particle.

In order to write down the action (5.144) we use the same trick as in (5.145) to
express the integrand in components and absorb the constraint p(τ ) ∈ Op with a
Lagrange multiplier N (τ ). (The time parameter along the world line is once again
denoted as τ , in order to distinguish it from the time coordinate t .) Using the pairing
(4.107) the world line action reads

S
[
x(τ ), t (τ ), p(τ ), E(τ ), N (τ )

] =
∫ T

0
dτ

[
pi ẋ

i − Eṫ − N

(
p2

2M
− E

)]

(5.152)

where i = 1, . . . , D − 1. In principle we should also include a time-dependent
central term λ(τ ) (recall the last entry of (4.105)), but one readily verifies that its
contribution to the action is a boundary term sowe neglect it from now on. This being
said, note that the presence of the central extension is crucial in giving rise to the
constraint E ≈ p2/2M obtained by varying N . The equations of motion obtained

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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by varying E give N = ṫ , so we can once more interpret N (τ ) as a lapse function
along the world line. Plugging the solution of the equations of motion of N and E
into (5.152), we get

S
[
x(τ ), t (τ ), p(τ )

] =
∫ T

0
dτ

[
pi ẋ

i − p2

2M
ṫ

]
,

which we recognize as the action of a free non-relativistic particle moving in R
D−1,

written in a reparameterization-invariantway (see e.g. Chap. 4 of [38]). By expressing
the action as an integral over the “real time” t = t (τ ), we find

S[x(t), p(t)] =
∫ T

0
dt

[
pi ẋ

i − p2

2M

]
(5.153)

where the dot now denotes differentiation with respect to t .

Path Integrals and Characters

From now on we take D = 3 for simplicity. Our goal is to plug the action (5.153)
into a path integral so as to recover the Bargmann character (4.123) for r = 1. Note
that the steps leading from the original Hamiltonian action (5.152) to the quadratic
action (5.153) all go through in the path integral since they amount to integrating out
variables on which the action depends linearly.

We wish to evaluate the rotating partition function of a massive Galilean particle,

Z(β, θ) = Tr
(
e−β Ĥ+iθ Ĵ

)
, (5.154)

where Ĥ = p̂2/2M is the Hamiltonian and Ĵ is the angular momentum operator

Ĵ = x̂1 p̂2 − x̂2 p̂1. (5.155)

The trace (5.154) can be interpreted as the partition function of a free non-relativistic
particle in a frame that rotates at imaginary angular velocity iθ/β. There are at least
two equivalent ways to evaluate it. The first is to compute a time-sliced path integral

Z(β, θ) =
∫

x(β)=x(0)

DxDp exp

[
−
∫ β

0
dτ

(
−i p j ẋ

j + p2

2M
− iθ(x1 p2 − x2 p1)

)]

(5.156)

where DxDp is the standard path integral measure of quantum mechanics. In the
argument of the exponential we recognize the Euclidean section of (5.153) sup-
plemented by a term proportional to θJ . Expression (5.156) may thus be seen
as the canonical partition function (3.50) of a system with effective Hamiltonian
Ĥeff = Ĥ − iθ

β
Ĵ . The second way is to realize that the operator Ĵ generates rotations

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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in the plane. Thus if we introduce a basis of states |x1, x2〉 localized at (x1, x2), the
trace (5.154) is a (finite-dimensional) integral

Z(β, θ) =
∫

R2
dx1dx2

〈
Rθ · (x1, x2)

∣
∣e−βH

∣
∣x1, x2

〉
(5.157)

where Rθ · (x1, x2) denotes the action of a rotation by θ on the vector (x1, x2). From
this second viewpoint, the partition function is a trace over transition amplitudes
between initial and final states that are rotated with respect to each other. Since
transition amplitudes can be written as path integrals, expression (5.157) is a path
integral in disguise and takes the same form as (5.156) up to two key differences: (i)
the term iθJ no longer appears in the exponential, and (ii) the periodicity condition
on paths is x(β) = Rθ · x(0) instead of x(β) = x(0).

The two methods just described give identical results, but we pick the second one
for simplicity. Recall that the propagator of a free massive particle on a plane is (in
Dirac notation)

〈
x ′, t

∣∣e−i Ht
∣∣x, 0

〉 = M

2πi t
exp

[
iM |x ′ − x |2

2t

]
(5.158)

where | · | is the Euclidean norm. From this we find the Euclidean propagator

〈
Rθ · x, t∣∣e−βH

∣
∣x, 0

〉 = M

2πβ
exp

[
− M

2β
(1 − cos θ)x2

]
(5.159)

where x2 ≡ |x |2. To obtain the partition function (5.157) we integrate (5.159):

Z(β, θ) =
∫

R2
d2x

M

2πβ
exp

[
− M

2β
(1 − cos θ)x2

]
. (5.160)

For θ �= 0 (modulo 2π) this is just a Gaussian integral and the result is precisely a
character (4.123) with r = 1. We conclude that the space obtained by quantizing a
massive coadjoint orbit of the Bargmann group coincides with the Hilbert space of
a free, massive, non-relativistic particle.

Remark Having seen the computation of the trace of e−βH+iθJ in Bargmann repre-
sentations, one may wonder if the result can be analytically continued to the grand
canonical partition function

Z(β,�) = Tr
(
e−β(H−�J )

)
(5.161)

where � is a real angular velocity, describing the thermodynamics of a system in
a real rotating frame. This corresponds to taking θ = −iβ� purely imaginary in
(5.154). If we were to evaluate (5.161), we would be led to expression (5.159) with
1 − cos θ = 1 − cosh(β�) < 0, which is a serious problem: the integral (5.160)

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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would diverge. Intuitively this divergence is due to the fact that free particles move
all over space without any potential that prevents them from escaping to infinity
when put in a rotating frame. This divergence is typical of rotating characters in flat
space and can also be seen in the Poincaré characters of Sect. 4.2. By contrast, the
partition function (5.161) of a two-dimensional harmonic oscillator is well-defined
as long as the angular velocity � is smaller than the oscillator’s natural frequency.
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Part II
Virasoro Symmetry and AdS3 Gravity

In this part, we initiate the study of infinite-dimensional symmetry groups by
analysing the group of diffeomorphisms of the circle, whose central extension is
the Virasoro group. Upon defining the latter, we classify its coadjoint orbits, i.e.
orbits of CFT stress tensors under conformal transformations in two dimensions.
As an application, we show how Virasoro symmetry is realized in asymptotically
Anti-de Sitter gravity in three dimensions and interpret unitary representations of
the Virasoro algebra from a gravitational perspective. Note that Virasoro coadjoint
orbits will play a key role for BMS3 particles in part III, as they will coincide with
their supermomentum orbits.



Chapter 6
The Virasoro Group

In the first part of this thesis we have introduced some general tools for dealing with
symmetries in quantum mechanics. Our goal is to eventually apply these tools to the
BMS3 group in three dimensions. Accordingly, in this chapter and the two next ones
we address a necessary prerequisite for these considerations by studying the central
extension of the group of diffeomorphisms of the circle, i.e. the Virasoro group.
The latter is part of the asymptotic symmetry group of many gravitational systems,
where it essentially consists of conformal transformations of celestial circles. It also
accounts for the symmetries of two-dimensional conformal field theories and thus
illuminates certain aspects of holography in general, and AdS3/CFT2 in particular.

A word of caution is in order at the outset regarding the interpretation of the
Virasoro group from a gravitational viewpoint. While diffeomorphisms in general
relativity are generally thought of as gauge redundancies, the group Diff(S1) that
we shall study here should by no means be understood in that sense. On the con-
trary, it should be interpreted as a global space-time symmetry group on a par with
SL(2, R) or the Poincaré group. In fact, in theBMS3 case, Diff(S1)will be an infinite-
dimensional extension of the Lorentz group in three dimensions. Accordingly this
chapter and the next one may be seen as a detailed investigation of a group that
extends Lorentz symmetry in an infinite-dimensional way.

Our plan for this chapter is the following. In Sect. 6.1 we define the groupDiff(S1)

of diffeomorphismsof the circle as an infinite-dimensionalLie group, andwedescribe
its adjoint representation, its Lie algebra Vect(S1), and its coadjoint representation.
Section6.2 is devoted to its cohomology; in particular we introduce the Gelfand-
Fuks cocycle and its integral, the Bott-Thurston cocycle, which respectively define
the Virasoro algebra and the Virasoro group. In Sect. 6.3 we study the Schwarzian
derivative, which will lead to a unified picture of Virasoro cohomology. Finally,
in Sect. 6.4 we define the Virasoro group and work out its adjoint and coadjoint
representations; the latter coincides with the transformation law of two-dimensional
CFT stress tensors under conformal transformations.

© Springer International Publishing AG 2017
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164 6 The Virasoro Group

Regarding references, the holy book on the Virasoro group is [1] while [2] is a
pedagogical introduction to infinite-dimensional group theory. Some familiarity with
two-dimensional CFT may come in handy at this stage; see e.g. [3–5].

6.1 Diffeomorphisms of the Circle

In this section we study the elementary properties of the group Diff(S1). We first
brieflymention issues related to infinite-dimensional Lie groups, then defineDiff(S1)

and show that its Lie algebra consists of vector fields on the circle. We also introduce
densities on the circle, i.e. primary fields, display the coadjoint representation of
Diff(S1), and discuss certain properties of the exponential map.

6.1.1 Infinite-Dimensional Lie Groups

The diffeomorphisms of any manifold depend on an infinity of parameters and there-
fore span an infinite-dimensional group. One would like this group to be smooth in a
certain sense, which leads to the problem of defining infinite-dimensional Lie groups
and manifolds. Here we review this question in broad terms; we refer e.g. to [6] for
a much more complete presentation.

In the same way that any finite-dimensional manifold looks locally like R
n , one

would like to find the prototypical infinite-dimensional topological vector space V

such that infinite-dimensional manifolds be locally homeomorphic to V. As it turns
out, takingV to be aFréchet space leads to awell-defined theory of differentiation and
smoothness, which can then be used to define Fréchet manifolds. Roughly speaking,
Fréchet spaces are vector spaces that generalize Banach spaces. For example the
space C∞(M) of smooth functions on a finite-dimensional manifoldM is a Fréchet
space (but not a Banach space). A Lie-Fréchet group then is a group endowed with
a structure of Fréchet manifold such that multiplication and inversion are smooth.
For instance the group Diff(M) of diffeomorphisms of a compact finite-dimensional
manifold M is a Lie-Fréchet group. From now on we refer to infinite-dimensional
Lie-Fréchet groups simply as “infinite-dimensional groups”.

Infinite-dimensional manifolds are strikingly different from finite-dimensional
ones in many respects. For example the notion of “tangent vectors” is ambiguous
in infinite dimension, and the lack of existence/uniqueness theorems makes other
seemingly obvious definitions fail, such as the notion of integral curves. We will
encounter a similarly counter-intuitive phenomenon below, when explaining that the
exponential that maps vector fields on diffeomorphisms is not locally surjective, in
contrast with its finite-dimensional counterpart.

In the remainder of this section we deal with the group of diffeomorphisms of
the circle as an infinite-dimensional Lie(-Fréchet) group. In particular we will think
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of its Lie algebra as its tangent space at the identity, identified with the space of
left-invariant vector fields, from which the remaining definitions will follow.

6.1.2 The Group of Diffeomorphisms of the Circle

We consider the unit circle S1 = {
eiϕ ∈ C

∣
∣ϕ ∈ [0, 2π[}. Its fundamental group is

isomorphic to Z and its universal cover is the real line R, with a projection

p : R → S1 : ϕ �→ eiϕ (6.1)

depicted in Fig. 2.1. This allows us to think of S1 as the quotient R/2πZ of the
real line by the equivalence relation ϕ ∼ ϕ + 2π, since the kernel of p consists of
translations of R by integer multiples of 2π.

Diffeomorphisms in the Complex Plane

A diffeomorphism of the circle is a smooth bijection F : S1 → S1 whose inverse
is also smooth. We denote the group of all such maps by Diff(S1), with the group
operation given by composition:

F · G ≡ F ◦ G ∀ F, G ∈ Diff(S1). (6.2)

Diff(S1) is an infinite-dimensional Lie group that inherits its smooth structure from
that of the Fréchet manifold of smooth maps S1 → S1. Given an orientation on S1,
diffeomorphisms may preserve it or break it. In particular the set of diffeomorphisms
that preserve orientation is a subgroup of Diff(S1), denoted Diff+(S1) and called the
group of orientation-preserving diffeomorphisms of the circle. We will prove below
that Diff+(S1) is connected.

For practical purposes it is useful to describe diffeomorphisms of the circle in
terms of the 2π-periodic coordinate ϕ of (6.1). A diffeomorphism then is a map
F : eiϕ �→ F(eiϕ) where F(eiϕ) has unit norm. As an example one can verify that
the set of transformations of the form

F(eiϕ) = Aeiϕ + B

B̄eiϕ + Ā
, |A|2 − |B|2 = 1 (6.3)

is a subgroup of Diff+(S1) isomorphic to the connected Lorentz group in three

dimensions, SO(2, 1)↑
(4.83)∼= PSL(2, R). Rigid rotations are given by A = eiθ/2 and

B = 0:
F(eiϕ) = ei(ϕ+θ) = eiθeiϕ. (6.4)

Similarly, the typical orientation-changing diffeomorphism is the parity transforma-
tion

http://dx.doi.org/10.1007/978-3-319-61878-4_2
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Fig. 6.1 The two connected components of Diff(S1) are related by parity. Compare with the
connected components of the Lorentz group in Fig. 4.2

F(eiϕ) = e−iϕ. (6.5)

Any parity-changing diffeomorphism of the circle can be written as the composi-
tion of (6.5) with an orientation-preserving transformation. There appears to be no
analogue of time-reversal in Diff(S1). All in all, Diff+(S1) is an infinite-dimensional
cousin of the connectedLorentz group in three dimensions, SO(2, 1)↑, whileDiff(S1)

extends the orthochronous Lorentz group O(2, 1)↑. See also Fig. 6.1.

Diffeomorphisms in Real Coordinates

Given a diffeomorphism F : S1 → S1, there exists a diffeomorphism f : R → R of
the real line such that

F(eiϕ) = ei f (ϕ), i.e. F ◦ p = p ◦ f (6.6)

in terms of the projection (6.1). In order for f to be compatible with the periodicity of
ϕ, we must require that f (ϕ + 2π) = f (ϕ) ± 2π, where the plus sign corresponds
to an orientation-preserving diffeomorphism while the minus sign corresponds to an
orientation-changing one. In this language the rotation (6.4) corresponds to f (ϕ) =
ϕ + θ while the parity transformation (6.5) is f (ϕ) = −ϕ.

Definition A smooth map f : R → R is 2πZ-equivariant if f (ϕ + 2π) = f (ϕ) +
2π. Any such map can be written as f (ϕ) = ϕ + u(ϕ), where u is 2π-periodic.

In these terms, any orientation-preserving diffeomorphism F of the circle is a
projection (6.6) of a 2πZ-equivariant diffeomorphism f of the real line, that is, a
smooth function f : R → R such that

f ′(ϕ) > 0 , f (ϕ + 2π) = f (ϕ) + 2π (6.7)

for any ϕ ∈ R, where prime denotes differentiation with respect to ϕ. The group
operation (6.2) then becomes

f · g = f ◦ g (6.8)

where f, g correspond to F, G according to (6.6). From now on we always describe
Diff(S1) in terms of diffeomorphisms of R satisfying the properties (6.7). By the
way, this is why we have kept writing group elements as “ f ” throughout this thesis.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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Note that the diffeomorphism F does not determine f uniquely: one can add to
f (ϕ) an arbitrary constant multiple of 2π without affecting F = ei f . This ambiguity
can be removed by requiring e.g. that f (0) belongs to the interval [0, 2π[. One
says that f is a lift of F , and there are infinitely many lifts for a given F . For our
purposes it is only important that giving f determines F = ei f uniquely, so that we
can consistently write all orientation-preserving diffeomorphisms of the circle in the
form (6.7).

6.1.3 Topology of Diff(S1)

Lemma The group Diff+(S1) of orientation-preserving diffeomorphisms is connec-
ted, and Diff(S1) has two connected components related by parity.

Proof Let f (ϕ) be a diffeomorphism of R that satisfies (6.7), and consider the
corresponding diffeomorphism of the circle given by (6.6). We wish to show that
there exists a continuous path that connects f to the identity. Consider therefore the
one-parameter family of functions

ft (ϕ) = (1 − t) f (ϕ) + tϕ , t ∈ [0, 1] . (6.9)

For each t , ft satisfies (6.7) and therefore defines a diffeomorphism of the circle. At
t = 0 it coincides with f while at t = 1 it is the identity. See Fig. 6.2. �

For the purposes of representation theory it is important to know the fundamen-
tal group of Diff+(S1), as it determines whether Diff+(S1) has topological central
extensions. In that context the key result is the following:

Lemma Diff+(S1) is homotopic to a circle, so its fundamental group is

π1
(
Diff+(S1)

) ∼= Z. (6.10)

Fig. 6.2 The homotopy
(6.9) turns a diffeomorphism
f (ϕ) (here leaving the point
ϕ = 0 fixed) into the
identity. It implies both that
the group Diff+(S1) is
connected and that it is
homotopic to a circle
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Its universal cover D̃iff+(S1) is the group of 2πZ-equivariant diffeomorphisms of R,
with the projection given by (6.6).

Proof We follow [7]. The key to the proof is to realize that Diff+(S1) is homotopic
to its subgroup Isom+(S1) of orientation-preserving isometries of the circle (for the
standard flat metric). Since Isom+(S1) is a group U(1) of rigid rotations, it will
follow that Diff+(S1) has the homotopy type of a circle and therefore has a funda-
mental group Z. So let us prove the homotopy equivalence Diff+(S1) ∼ Isom+(S1).
Call Diff+0 (S1) the group of orientation-preserving diffeomorphisms of the circle
leaving the point ϕ = 0 fixed. Since isometries of S1 are rotations, there exists a
decomposition

Diff+(S1) = Diff+0 (S1) · Isom+(S1). (6.11)

Indeed, any diffeomorphism of the circle is the composition of a rigid rotation with
a diffeomorphism leaving ϕ = 0 fixed; both Diff+0 (S1) and Isom+(S1) are groups
and their intersection only contains the identity. Now note that any diffeomorphism
preserving ϕ = 0 admits a unique lift f such that f (0) = 0 and f (2π) = 2π, so we
can think of Diff+0 (S1) as the set of 2πZ-equivariant diffeomorphisms of R that fix
the point ϕ = 0; this identification is one-to-one. It only remains to observe that the
maps (6.9) define a homotopy whose effect at t = 1 is to retract the whole Diff+0 (S1)

on the identity. As a result Diff+0 (S1) is homotopic to a point, and so by (6.11)
Diff+(S1) is homotopic to a circle. Unwinding this circle gives rise to the group of
2πZ-equivariant diffeomorphisms of R, which therefore span the universal cover of
Diff+(S1). �

This lemma confirms the interpretation of Diff+(S1) as an infinite-dimensional
analogue of PSL(2, R), since the latter is also homotopic to a circle (see Sect. 4.3).
In particular formula (6.11) is the Diff(S1) analogue of the Iwasawa decomposition
(4.81) of SL(2, R). Since Diff+0 (S1) has the homotopy type of a point, the group
Diff+(S1) may be seen as an infinite-dimensional cylinder S1 × R

∞ where S1 con-
sists of rigid rotations while R

∞ is spanned by infinite-dimensional generalizations
of boosts. Note that property (6.10) implies the existence of topological projective
representations of Diff(S1). Applied to BMS3, it will imply that the spin of massive
particles is not quantized (as in the Poincaré group in three dimensions).

In what follows we focus on the universal cover D̃iff+(S1) rather than Diff(S1)

or Diff+(S1), except if explicitly stated otherwise. To reduce clutter we will abuse
notation by writing Diff(S1) for the universal cover, instead of the more accurate
notation D̃iff+(S1). Accordingly, from now on elements of Diff(S1) are diffeomor-
phisms f , g, etc. of the real line satisfying the properties (6.7). The inverse of f will
be denoted f −1 and is such that f ( f −1(ϕ)) = f −1( f (ϕ)) = ϕ.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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6.1.4 Adjoint Representation and Vector Fields

We can now look for the Lie algebra of Diff(S1), which is identified with the tangent
space at the identity and corresponds to infinitesimal diffeomorphisms. It is intuitively
clear that this algebra is a space of functions, since a diffeomorphism close to the
identity can be written as

f (ϕ) = ϕ + εX (ϕ) (6.12)

where ε is “small” and X (ϕ) is a function on the circle. A more subtle problem
is to determine the adjoint action of diffeomorphisms on this Lie algebra, and to
deduce the expression of the Lie bracket. In order to work this out we pick a path
γ : R → Diff(S1) : t �→ γt such that γ0 is the identity and

γt (ϕ) = ϕ + t X (ϕ) + O(t2) (6.13)

for small t . The adjoint representation is defined by (5.6), so we find

(
Ad f (X)

)
(ϕ) = d

dt

[
f
(
γt

(
f −1(ϕ)

) )]∣∣
∣
t=0

(6.13)= d

dt

[
f
(

f −1(ϕ) + t X
(

f −1(ϕ)
) )]∣∣

∣
t=0

.

(6.14)

Since t is “small” in this expression, we can Taylor expand

f
(

f −1(ϕ) + t X
(

f −1(ϕ)
)) = ϕ + t X

(
f −1(ϕ)

)
f ′ ( f −1(ϕ)

)+ O(t2) (6.15)

where we have used f ( f −1(ϕ)) = ϕ. The derivative of the latter equation implies

f ′( f −1(ϕ)) = 1

( f −1)′(ϕ)
(6.16)

which can be plugged into (6.15) and thus provides the adjoint representation

(
Ad f (X)

)
(ϕ) = X

(
f −1(ϕ)

)

( f −1)′(ϕ)
. (6.17)

This formula is the transformation law of X (ϕ) under a diffeomorphism ϕ �→ f (ϕ).
It shows in particular that X (ϕ) in (6.12) is not just a function on the circle, due to
the derivative of f −1 in (6.17). Using (6.16), we can also rewrite it by evaluating the
left-hand side at f (ϕ) rather than ϕ:

(
Ad f (X)

)
( f (ϕ)) = f ′(ϕ)X (ϕ) (6.18)

We recognize here the transformation law of the component X (ϕ) of a vector field

X (ϕ)
∂

∂ϕ
(6.19)

http://dx.doi.org/10.1007/978-3-319-61878-4_5
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under a diffeomorphism f . We shall denote by Vect(S1) the space of smooth vector
fields on S1, whose elements will be written as X , Y , etc. We have just shown that
Vect(S1) is the Lie algebra of Diff(S1); it now remains to find the Lie bracket.

Take once more a path γt in Diff(S1) that satisfies (6.13). Picking a vector field
Y ∈ Vect(S1) and a point ϕ ∈ [0, 2π], let us evaluate

(adX (Y )) (ϕ)
(5.8)= d

dt

(
Adγt (Y )

)∣∣
t=0(ϕ)

(6.17)= d

dt

(
Y (γ−1

t (ϕ))

(γ−1
t )′(ϕ)

)∣∣
∣
∣
t=0

. (6.20)

Here (6.13) implies (γ−1
t )′(ϕ) = 1 − t X ′(ϕ) aswell asY (γ−1

t (ϕ)) = Y (ϕ) − t X (ϕ)Y ′(ϕ)

to first order in t . Plugging these expressions in (6.20) we obtain adX Y = −XY ′ +
Y X ′, where it is understood that both sides are evaluated at the same pointϕ. We con-
clude that the Lie bracket of Vect(S1), seen as the Lie algebra of the group Diff(S1),
is the opposite of the standard Lie bracket of vector fields:

[X, Y ]Lie algebra = −[X, Y ]Vector fields. (6.21)

This is in fact a commonphenomenon: as a consequence of (5.31), the groupDiff(M)

of diffeomorphisms of a (compact, finite-dimensional) manifoldM is a Lie-Fréchet
group whose Lie algebra is the space Vect(M) endowed with the opposite of the
standard Lie bracket of vector fields [1, 2, 8]. Thus:

Proposition The Lie algebra of the group Diff(S1) is the space Vect(S1) of vector
fields on the circle, with the Lie bracket (6.21) given by the opposite of the standard
Lie bracket of vector fields.

In what follows we will bluntly neglect the sign subtlety and endowVect(S1)with
the usual bracket

[X, Y ] = (
X (ϕ)Y ′(ϕ) − Y (ϕ)X ′(ϕ)

) ∂

∂ϕ
. (6.22)

This is a harmless abuse of conventions and may be seen as an alternative definition
of the Lie bracket for groups of diffeomorphisms. With that abuse the Lie algebra of
Diff(S1) becomes Vect(S1) with the usual Lie bracket of vector fields.

Witt Algebra

Since all functions on the circle can be expanded in Fourier series, any vector field
is a (generally infinite) complex linear combination of generators

�m ≡ eimϕ∂ϕ , m ∈ Z. (6.23)

The brackets (6.22) of these generators can be written as

i[�m, �n] = (m − n)�m+n , (6.24)

where one may recognize the Witt algebra of conformal field theory. It is an infinite-
dimensional extension of the sl(2, R) algebra (5.90) spanned by �−1, �0, �1. The

http://dx.doi.org/10.1007/978-3-319-61878-4_5
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latter consists of vector fields X (ϕ)∂ϕ with X (ϕ) = X0 + X1 cosϕ + X2 sinϕ for
Xμ ∈ R, and generates diffeomorphisms of the form (6.3). In particular the constant
vector field �0 generates rigid rotations of the circle.

6.1.5 Primary Fields on the Circle

Formula (6.18) gives the transformation law of vector fields on the circle under
diffeomorphisms. Similarly, a one-form α(ϕ)dϕ would transform as α �→ f · α,
where

( f · α)( f (ϕ)) = α(ϕ)

f ′(ϕ)
, (6.25)

while a function α(ϕ) would simply transform as ( f · α)( f (ϕ)) = α(ϕ). Vector
fields, one-forms and functions can all be seen as sections of suitable vector bundles
on the circle, which suggests that they can be generalized to sections of tensor product
bundles such as T S1 ⊗ · · · ⊗ T S1 or T ∗S1 ⊗ · · · ⊗ T ∗S1.

Definition A density of weight h ∈ R on the circle is an expression of the form

α = α(ϕ)(dϕ)h (6.26)

where α(ϕ) is a smooth function on the circle; it acts on the tangent space TϕS1

according to
〈
α(ϕ)dϕh, V ∂ϕ

〉 ≡ α(ϕ)V h . We denote by Fh(S1) the vector space of
densities of weight h.

When h is an integer, a density of weight h is a section of

T ∗S1 ⊗ · · · ⊗ T ∗S1
︸ ︷︷ ︸

|h| times

if h ≥ 0, or T S1 ⊗ · · · ⊗ T S1
︸ ︷︷ ︸

|h| times

if h < 0.

In particular, a density is a vector field when h = −1, a one-form when h = 1, and
a function when h = 0. The definition (6.26) generalizes these notions to arbitrary
real values of h. The notation α is justified by the fact that in the BMS3 group,
supertranslations will be densities with weight −1.

Expression (6.26) suggests that the densityα(ϕ)(dϕ)h is a coordinate-independent
quantity. Indeed, under a diffeomorphism f : ϕ �→ f (ϕ), it transforms as

( f · α)(ϕ) ≡ (
( f −1)′(ϕ)

)h
α( f −1(ϕ)) (6.27)

or equivalently as

( f · α)( f (ϕ)) ≡ α(ϕ)

( f ′(ϕ))h
. (6.28)
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This reduces to (6.18) for h = −1 and to (6.25) for h = 1. If we think of f (ϕ)

as a “conformal transformation” of the circle, then Eq. (6.28) coincides with the
transformation law of a (chiral) primary field of weight h. It provides a representation
of Diff(S1) in the space Fh(S1). This representation is infinite-dimensional and
generally non-unitary because the would-be “scalar product”

∫ 2π

0
dϕα(ϕ)β(ϕ) , α,β ∈ Fh(S1) (6.29)

is not left invariant by (6.28) for generic values of h. The only exception is the case
of spinor fields, h = 1/2. One can think of (6.28) as a Diff(S1) generalization of
the various finite-dimensional (but non-unitary) irreducible representations of the
Lorentz group. The number h can then be thought of as a spin label, in the same
way that finite-dimensional Lorentz representations correspond to transformation
laws of relativistic fields with definite spin. (Beware: the word “spin” here does not
refer to the notion of “spin” encountered in representations of semi-direct products.
These two notions are related in that the Lorentz spin of a quantum field determines
the Poincaré spin of the corresponding particles, but they are nevertheless different
concepts.)

From (6.28) one can read off the transformation law of densities under infini-
tesimal diffeomorphisms, that is, under vector fields on the circle. Taking f (ϕ) =
ϕ + εX (ϕ) in (6.28) one finds, to first order in ε,

( f · α)(ϕ) = α(ϕ) − ε
[
X (ϕ)α′(ϕ) + h α(ϕ)X ′(ϕ)

]
. (6.30)

We then define

X · α(ϕ) ≡ − ( f · α)(ϕ) − α(ϕ)

ε
(6.31)

and obtain
X · α = Xα′ + h αX ′. (6.32)

As before, one may recognize here the infinitesimal transformation law of a primary
field α of weight h under an conformal transformation generated by X .

6.1.6 Coadjoint Representation of Diff(S1)

Dual Spaces

Wementioned around (6.29) that the integral of the product of two densities with the
same weight is generally not invariant under diffeomorphisms. However, there does
exist a Diff(S1)-invariant pairing of densities. Indeed, consider the space Fh(S1) of
densities of weight h. Its dual space consists of all linear forms
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p : Fh(S1) → R : α �→ 〈p,α〉 . (6.33)

Since Fh(S1) is infinite-dimensional, its dual space is pathological: the map (6.33)
need not be continuous and therefore does not preserve the differentiable structure
of Fh(S1). Accordingly one generally restricts attention to the space of continuous
linear forms (6.33); the latter coincides with the space of distributions on the circle.
In addition, for concrete computations it is much more convenient to consider only
regular distributions, that is, distributions that can be written in the form

〈p,α〉 = 1

2π

∫ 2π

0
dϕ p(ϕ)α(ϕ) (6.34)

where p(ϕ) is a smooth function on the circle. We will call the space of such distri-
butions the smooth or regular dual of Fh(S1). As a vector space, it is isomorphic to
the space C∞(S1) of smooth functions on the circle. Note that any distribution can
be obtained as the limit of a sequence of regular distributions, so in this sense we
are not missing anything even when restricting attention to regular distributions. The
regular dual of Fh(S1) will be denoted as Fh(S1)∗. The notation in (6.33) is justified
by the fact that, in BMS3, p will be an infinite-dimensional supermomentum vector
dual to supertranslations.

Since Fh(S1) carries a representation (6.28), it is natural to ask how the dual
representation (4.16) acts on the regular dual. By definition, one has 〈 f · p,α〉 =〈
p, f −1 · α

〉
for any diffeomorphism f , any density α ∈ Fh(S1) and any smooth

distribution p ∈ Fh(S1)∗. Using (6.27) and the pairing (6.34), we get

〈 f · p,α〉 = 1

2π

∫ 2π

0
dϕ p(ϕ)( f ′(ϕ))hα( f (ϕ)) . (6.35)

If now we rewrite 〈 f · p,α〉 as an integral (6.34) with the integration variable ϕ
replaced by f (ϕ), the condition that 〈 f · p,α〉 matches the right-hand side of (6.35)
for any α readily provides

( f · p)( f (ϕ)) = p(ϕ)

( f ′(ϕ))1−h
.

This is the transformation law (6.28) with h replaced by 1 − h:

Proposition There is an isomorphism Fh(S1)∗ ∼= F1−h(S1) which is compatible
with the natural action of Diff(S1) on these spaces. In addition, the pairing between
Fh(S1) and F1−h(S1) is Diff(S1)-invariant in the sense that 〈 f · p, f · α〉 = 〈p,α〉
for all f ∈ Diff(S1) and all densities p ∈ F1−h(S1), α ∈ Fh(S1).

Thus the duals of densities with weight h are densities with weight 1 − h, and
vice-versa. One can apply this to the examples encountered above:

• the duals of vector fields (h = −1) are quadratic densities (h = 2);
• the duals of functions (h = 0) are one-forms (h = 1);

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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• the duals of spinor fields (h = 1/2) are spinor fields (i.e. F1/2(S1) is self-dual).

Note that, for all values of h except h = 1/2, the conformally invariant pairing (6.34)
is not a scalar product since its arguments are densities whose transformation laws
under Diff(S1) differ. This should be contrastedwith the finite-dimensional examples
encountered in Chap.4, where the existence of an invariant bilinear form led to the
equivalence ofσ∗ andσ.We shall see below that this difference is crucial for coadjoint
orbits of the Virasoro group (Sect. 7.1) and hence for the supermomentum orbits of
the BMS3 group (see part III).

Coadjoint Representation

Since the adjoint representation of Diff(S1) is the transformation law (6.18) of vector
fields, we now know that the coadjoint representation of Diff(S1) is the transforma-
tion law of quadratic densities:

(Ad∗
f p)( f (ϕ)) = p(ϕ)

( f ′(ϕ))2
(6.36)

This can also be written infinitesimally as

ad∗
X p = X p′ + 2X ′ p. (6.37)

In CFT terminology, vector fields are infinitesimal conformal transformations and
their duals are (quasi-)primary fields with weight h = 2, that is, CFT stress tensors.
Indeed formula (6.36) is the transformation law of a stress tensor p(ϕ) if we think of
the map ϕ �→ f (ϕ) as a conformal transformation. Similarly, the duals of functions
are primary fields with weight h = 1, i.e. currents. From now on we sometimes refer
to Diff(S1)-invariance as “conformal invariance”. Note that at this point we haven’t
included any central charge yet; this will change once we turn to the Virasoro group.

6.1.7 Exponential Map and Vector Flows

We mentioned above that each vector field X (ϕ)∂ϕ may be seen as an infinitesimal
diffeomorphism; let us make this more precise. Given a vector field X (ϕ)∂ϕ, its
integral curves are paths ϕ(t) on the circle that satisfy the evolution equation

ϕ̇(t) = X (ϕ(t)). (6.38)

In particular, when t = ε is “small” one finds that ϕ(ε) takes the form (6.12) with
initial condition ϕ(0) = ϕ. Equation (6.38) is an ordinary differential equation in
one dimension and X (ϕ) is smooth, so given an initial condition ϕ(0), the solution
exists and is unique. We define the flow of X as the one-parameter family of diffeo-
morphisms that maps a “time” t and an initial condition ϕ on the point ϕ(t) obtained

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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by solving (6.38) with this initial condition. If we call this solution ϕ̃(t,ϕ), then the
flow of X is

φX : R × S1 → S1 : (t,ϕ) �→ ϕ̃(t,ϕ). (6.39)

For example the flow of the constant vector field X (ϕ) = 1 is given by ϕ̃(t) = ϕ + t
and consists of rigid rotations by t , as already anticipated above. Using the notion of
flow, one can define an exponential map for Diff(S1):

Definition The exponential map of the group Diff(S1) is

exp : Vect(S1) → Diff(S1) : X (ϕ)∂ϕ �→ exp[X ] ≡ φX (1, ·) (6.40)

where φX is the flow (6.39) of X . In other words the diffeomorphism exp[X ](ϕ) is
obtained by requiring that the equality

∫ exp[X ](ϕ)

ϕ

dφ

X (φ)
= 1 (6.41)

holds for any initial condition ϕ.
In anyfinite-dimensional Lie group, the exponentialmap (5.3) is a local diffeomor-

phism, so any group element belonging to a suitable neighbourhood of the identity
can be written as the exponential of an element of the Lie algebra. However, this is
not so for groups of diffeomorphisms: one can show that the exponential map (6.40)
does not define a local chart on Diff(S1) in that it is neither locally injective, nor
locally surjective. The idea of the proof is to build and explicit family of diffeomor-
phisms that are arbitrarily close to the identity but cannot be written as exponentials
of vector fields. This being said, the exponential map is always well-defined on a
Lie-Fréchet group, even when it is not locally surjective. See [1, 2] for details.

6.2 Virasoro Cohomology

As emphasized in Chap.2, cohomology is crucial for quantum-mechanical appli-
cations: it measures the possible “deformations” of a group structure (e.g. central
extensions), which typically do occur in quantum mechanics. When an algebra is
finite-dimensional and semi-simple, Whitehead’s lemma (2.23) ensures that there
are essentially no deformations; the same is true of the Poincaré group (4.40). By
contrast, we have seen how crucial cohomology is for the Galilei group (4.103), since
its central extension gives rise to the notion of mass.

With this motivation, the present section is devoted to the cohomology of Diff(S1)

and its Lie algebra. These considerations will eventually lead to the definition of the
Virasoro algebra, so we refer to them as “Virasoro cohomology”. We will start by
describing the real cohomology groups of Vect(S1) and of Diff(S1), then turn to

http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_2
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cohomologies whose cochains are primary fields on the circle. The results summa-
rized here are discussed at greater length in [1].

RemarkWeuse the notation and conventions ofChap. 2, and all cochains are required
to be smooth. Lie algebra cochains are denoted by lowercase sans serif letters such
as b, c, s, etc. while group cochains are denoted by uppercase letters B, C, S, etc.

6.2.1 The Gelfand-Fuks Cocycle

Here we derive the first and second real cohomology groups of Vect(S1); in partic-
ular we introduce the Gelfand-Fuks cocycle, which will eventually give rise to the
Virasoro algebra. We also describe higher-degree real cohomology groups.

Cohomology in Degrees One and Two

The computation of the first cohomology of Vect(S1) is immediate: since any vec-
tor field can be written as the bracket (6.22) of two other vector fields, the first
cohomology group (2.19) of Vect(S1) vanishes:

H1
(
Vect(S1)

) = 0. (6.42)

In other words there is no non-trivial real one-cocycle on Vect(S1). The second
cohomology of Vect(S1) is far more interesting:

Theorem The second real cohomology space of Vect(S1) is one-dimensional. It is
generated by the class of the Gelfand-Fuks cocycle

c(X, Y ) ≡ − 1

24π

∫ 2π

0
dϕX (ϕ)Y ′′′(ϕ) (6.43)

whose expression in the basis (6.23) is

c(�m, �n) = −i
m3

12
δm+n,0 . (6.44)

Proof Let c be a real two-cocycle on Vect(S1). Then dc = 0 where d is the
Chevalley–Eilenberg differential (2.15) for the trivial representation T . In terms
of the basis (6.23), the statement dc = 0 is tantamount to

c([�m, �n], �p) + c([�n, �p], �m) + c([�p, �m], �n) = 0 (6.45)

for all integers m, n, p. Taking p = 0 and using the antisymmetry of c we get

c(�0, [�m, �n]) = c([�0, �m], �n) + c(�m, [�0, �n]). (6.46)

http://dx.doi.org/10.1007/978-3-319-61878-4_2
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Here we can interpret the left-hand side as the differential of the one-cochain k =
c(�0, ·), so the left-hand side is exact while the right-hand side is a Lie derivative1

c([�0, �m], �n) + c(�m, [�0, �n]) = (
(i�0 ◦ d + d ◦ i�0) · c) (�m, �n) = (L�0c)(�m, �n)

(6.47)

where we used dc = 0. Since the left-hand side of (6.46) is exact, we conclude
that Lie derivation with respect to �0 leaves the cohomology class of c invariant.
(In geometric terms �0 generates rotations, so this says that the cohomology class
of c is invariant under rotations.) This allows us to turn c into a rotation-invariant
cocycle. Indeed, let b be a one-cochain and define c̃ ≡ c + db, which has the same
cohomology class as c. The Lie derivative of c̃ with respect to �0 now is

L�0 c̃ = L�0c + L�0db
(6.46)= dk + d(i�0(db)) = d

(
k + db(�0, ·)

)
. (6.48)

In order to make c̃ invariant under rotations, we need to choose b such that (6.48)
vanishes. One verifies that the definition

b(�m) = i

m
c(�0, �m) for m �= 0 (6.49)

satisfies this requirement for any b(�0). Thus, from now on we work only with the
rotation-invariant cocycle c̃ and we rename it into c for simplicity. Then we have
c(�0, �m) = 0, and Eq. (6.46) becomes

c([�0, �m], �n) + c(�m, [�0, �n]) = 0 (6.50)

for all integers m, n. The Lie brackets (6.24) then yield

(m + n) c(�m, �n) = 0 (6.51)

and thus imply that c(�m, �n) = 0 whenever m + n is non-zero. Writing c(�m, �n) =
cmδm+n,0 for some coefficients cm = −c−m , we are left with the task of determining
the cm’s with m > 0. Returning to the cocycle identity (6.45) with p = −m − 1 and
using once more the brackets (6.24), we find

cm+1 = (2 + m)cm − (2m + 1)c1
m − 1

(6.52)

for m ≥ 2. This shows that all cm’s are determined recursively by c1 and c2. In
particular, we now know that the cohomology space H2

(
Vect(S1)

)
is at most two-

dimensional; the choices cm = m3 and cm = m are indeed two linearly independent
solutions of the recursion relations (6.52). Now note that, if c is a coboundary c = dk
for some one-cochain k, then

1We denote by i the interior product of cochains.
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c(�m, �n) = dk(�m, �n)
(2.15)= k([�m, �n]) (6.24)= −i(m − n)k(�m+n)

so that c(�m, �−m) = −2imk(�0) always depends linearly on m. Accordingly, the
solution cm = m of the recursion relations (6.52) yields a trivial cocycle, while cm =
m3 is non-trivial. We conclude that, up to a coboundary, any non-trivial two-cocycle
on Vect(S1) reads

c(�m, �n) = N m3δm+n,0 (6.53)

for some normalization N �= 0. In particular, H2
(
Vect(S1)

)
is one-dimensional. �

Higher Degree Cohomologies

The real cohomology groups of Vect(S1) increase in complexity as their degree
becomes higher. Since we will not need any degree higher than two, we restrict
ourselves here to a qualitative description of the result (details can be found in [1]).

The first step is to fix the kind of cochains one wants to study. For Vect(S1) it is
natural to consider local real cochains

c : Vect(S1)
k → R : (X1, . . . , Xk) �→ c(X1, . . . , Xk) (6.54)

that take the form of an integral over S1 of some “cochain density” C :

c(X1, . . . , Xk) =
∫ 2π

0
dϕ C

(
X1(ϕ), X ′

1(ϕ), . . . , X (n1)
1 (ϕ), . . . , Xk(ϕ), . . . , X (nk)

k (ϕ)
)

.

Here the word local is used in the same sense as in field theory. The Gelfand-Fuks
cocycle (6.43) is of that form,with a densityC (X, Y ) ∝ XY ′′′.With this restriction on
the allowedcochains, one can study the resulting cohomologygroupsHk

loc

(
Vect(S1)

)
.

The result is as follows:

Proposition The real local cohomology groupsHk
loc

(
Vect(S1)

)
are all trivial except

if k is equal to 0, 2 or 3, in which case the cohomology group is one-dimensional:

Hk
loc

(
Vect(S1)

) =
{

R if k ∈ {0, 2, 3}
0 otherwise.

(6.55)

The generator ofH0
loc is the class of any non-zero constant function on Vect(S1); that

ofH2
loc is the Gelfand-Fuks cocycle (6.43). FinallyH3

loc is generated by the class of
the Godbillon-Vey cocycle

∫ 2π

0
dϕ det

⎛

⎝
X Y Z
X ′ Y ′ Z ′
X ′′ Y ′′ Z ′′

⎞

⎠ (6.56)

where it is understood that the integrand is evaluated at ϕ.
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Note that the full, generally non-local, cohomology groups of Vect(S1) do not
coincide with (6.55) because they contain classes of wedge products of the Gelfand-
Fuks and Godbillon-Vey cocycles. For example c ∧ c is a non-trivial, non-local
four-cocycle on Vect(S1) when c is the Gelfand-Fuks cocycle.

Remark In this work the Godbillon-Vey cocycle (6.56) will be unimportant.
However, it does play a key role in a specific context, as it was shown in [9] that
it is responsible for the unique non-trivial gauge-invariant deformation of a higher-
spin Chern-Simons action in three dimensions with gauge algebra Vect(S1) �ad∗

Vect(S1)
∗.

6.2.2 The Bott-Thurston Cocycle

We now turn to the low-degree real cohomology groups of the universal cover
D̃iff+(S1) of the group of orientation-preserving diffeomorphisms of the circle. We
show in particular how one can build a non-trivial two-cocycle corresponding to
Gelfand-Fuks by integration, and known as the Bott-Thurston cocycle. The latter
will eventually lead to the definition of the Virasoro group. As before, we abuse
notation by denoting the universal cover D̃iff+(S1) simply as Diff(S1).

Cocyclic Recipes

We start by describing a general algorithm for building two-cocycles on a group
[1, 10]. Let M be an orientable manifold endowed with a volume form μ. For any
orientation-preserving diffeomorphism f : M → M, we define a function T[ f −1]
onM by

f ∗μ ≡ eT[ f −1]μ. (6.57)

This function can be thought of as a modified derivative of f . It appears to have
no standard name in the literature but we will use it repeatedly below in the case
M = S1, so from now on we refer to T[ f −1] as the twisted derivative of f .

Lemma The map T : Diff+(M) → C∞(M) = f �→ T[ f ] defined by (6.57) is a
C∞(M)-valued one-cocycle on Diff+(M), where the action of diffeomorphisms on
functions is given by

( f · F)(p) = F( f −1(p)) (6.58)

for f ∈ Diff+(M), F ∈ C∞(M) and p ∈ M.

Proof Weneed to show that dT = 0 with the Chevalley–Eilenberg differential (2.31)
and the representationT given by the action (6.58) of diffeomorphisms on functions.2

If f, g are orientation-preserving diffeomorphisms, one readily verifies from the
definition (6.57) that T satisfies the cocycle property (2.32). �

2The fact that the same letter denotes the cocycle T and the representation T is merely a notational
coincidence.

http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_2
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Now let us consider another recipe, seemingly unrelated to and just as random as
the previous one. Take two vector spaces V and W acted upon by a group G accord-
ing to representations S and T , respectively, and let � : V × V → W : (v, v′) �→
�(v, v′) be an antisymmetric bilinear map such that

�
(
S[ f ]v,S[ f ]v′) = T [ f ] �(v, v′) (6.59)

for any group element f ∈ G and all v, v′ ∈ V. Finally, letT : G → V be aV-valued
one-cocycle on G with respect to the representation S.
Lemma The map

C : G × G → W : ( f, g) �→ C( f, g) ≡ �
(
T[ f ],T[ f g]) (6.60)

is a W-valued two-cocycle on G.

Proof We need to show that dC = 0 for the Chevalley–Eilenberg differential (2.31),
given thatW is acted upon by G according to the representation T . Using the fact that
� is bilinear and antisymmetric together with property (6.59), one readily verifies
by brute force that this is indeed the case. �

The Bott-Thurston Cocycle

The two constructions just described can be used to define a non-trivial two-cocycle
on the group Diff(S1). We will first use (6.57) to define a one-cocycle on Diff(S1),
then plug it into (6.60) for a well chosen map � to obtain the desired two-cocycle.

We consider the circle S1 endowed with the flat volume form μ = dϕ. Under a
diffeomorphism ϕ �→ f (ϕ) we have ( f ∗μ)ϕ = d( f (ϕ)) = f ′(ϕ)dϕ = elog( f ′(ϕ))μ,
so (6.57) provides a C∞(S1)-valued twisted derivative

T[ f ](ϕ) ≡ log
[
( f −1)′(ϕ)

]
, (6.61)

which is a one-cocycle. We use square brackets to denote the argument of T because
the latter is a functional on Diff(S1); then T[ f ](ϕ) is the function T[ f ] evaluated at
ϕ.

To apply the construction (6.60), we also need to find a bilinear antisymmetric
map � : C∞(S1) × C∞(S1) → R which is invariant under Diff(S1) in the sense
that (6.59) holds when T is the trivial representation while S is the action (6.58) of
Diff(S1) on functions. A natural guess is

� : C∞(S1) × C∞(S1) → R : (F ,G) �→
∫ 2π

0
dϕF(ϕ)G ′(ϕ) =

∫

S1
FdG ,

(6.62)
which is manifestly antisymmetric (integrate by parts) and reparameterization-inva-
riant (the integrand is analogous to the pq̇ of Hamiltonian actions). Applying the

http://dx.doi.org/10.1007/978-3-319-61878-4_2
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prescription (6.60) with the one-cocycle (6.61), we obtain the following real two-
cocycle:

Definition The Bott-Thurston cocycle on Diff(S1) is [11]

C( f, g) ≡ − 1

48π

∫

S1
T[ f ] dT[ f ◦ g] (6.63)

(6.61)= − 1

48π

∫ 2π

0
dϕ log

[
( f −1)′(ϕ)

] (
log

[
(( f ◦ g)−1)′

])′
(ϕ) (6.64)

where d denotes the exterior derivative on the circle.
By construction, the Bott-Thurston cocycle satisfies the cocycle identity (2.9),

C( f, gh) + C(g, h) = C( f g, h) + C( f, g) . (6.65)

This will be instrumental in ensuring that C yields a well-defined centrally extended
group. For future applications it is useful to rewrite (6.64) in a slightly simpler way,
which relies on the following result:

Lemma If T is the twisted derivative (6.61), then for all f, g ∈ Diff(S1) one has

∫

S1
T[ f ]dT[ f ◦ g] =

∫

S1
T[( f ◦ g)−1]dT[g−1] . (6.66)

Proof We use two key properties: the first is the fact that T is a one-cocycle with
respect to the action of Diff(S1) on C∞(S1), so

T[ f ◦ g] = T[ f ] + T[g] ◦ f −1, (6.67)

and the second is a property that follows from the definition (6.61) and Eq. (6.16):

T[ f ] ◦ f = −T[ f −1]. (6.68)

We then find that (6.63) can be rewritten as

∫

S1
T[ f ] dT[ f ◦ g] = −

∫

S1
T[ f −1] dT[g] =

∫

S1
T[( f ◦ g)−1] dT[g−1] ,

which was to be proven. �

Thanks to this lemma we can write the Bott-Thurston cocycle (6.64) in a more
convenient way, without f −1’s all around the place:

C( f, g) = − 1

48π

∫

S1
log( f ′ ◦ g) d log(g′) = − 1

48π

∫

S1
T[( f ◦ g)−1]dT[g−1].

(6.69)
This is the definition that we will be using from now on.

http://dx.doi.org/10.1007/978-3-319-61878-4_2
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At this stage the Bott-Thurston cocycle seems to be coming out of the blue.
However it turns out that (6.69) is, in fact, a very natural quantity. We will explain
this in greater detail in Sect. 6.3, but for now we simply note the following relation:

Proposition The Bott-Thurston cocycle (6.69) is the integral of the Gelfand-Fuks
cocycle (6.43) in the sense of formula (2.35):

c(X, Y ) = − d2

dt ds

[
C
(
et X , esY

)− C
(
esY , et X

) ]∣∣
∣
t=0, s=0

. (6.70)

In particular, the Bott-Thurston cocycle is non-trivial.

Proof We consider infinitesimal diffeomorphisms f (ϕ) = ϕ + t X (ϕ) + O(t2) and
g(ϕ) = ϕ + sY (ϕ) + O(s2). Then log

(
f ′ ◦ g

) = t X ′ and log(g′) = sY ′ so that

C(et X , esY )
(6.69)= − 1

48π

∫ 2π

0
dϕ t X ′(ϕ)sY ′′(ϕ)

to first order in t, s. Relation (6.70) follows. It also follows that the Bott-Thurston
cocycle is non-trivial, since the Gelfand-Fuks cocycle is non-trivial. �

Remark The bilinear map (6.62) is a non-trivial two-cocycle on the Abelian Lie
algebra C∞(S1) of smooth functions on the circle. It defines a central extension of
C∞(S1) that can be interpreted in several ways: either as an infinite-dimensional
Heisenberg algebra, or as a u(1) Kac–Moody algebra. This kind of central extension
occurs for instance in the realm of warped conformal field theories [12, 13].

6.2.3 Primary Cohomology of Vect(S1)

Here we study some of the cohomology groups of Vect(S1) in spaces of densities
(i.e. primary fields). As in the real-valued case described earlier we consider the
cohomology defined by local cochains, which in the present case take the form

c[X1, . . . , Xk] = C
[
X1(ϕ), X ′

1(ϕ), . . . , X (n1)
1 (ϕ), . . . , Xk(ϕ), . . . , X (nk )

k (ϕ)
]
(dϕ)h

for some weight h. The functional C depends on the Xi ’s and finitely many of their
derivatives, all evaluated at the same point ϕ. We denote the corresponding coho-
mology spaces byHk

(
Vect(S1),Fλ(S1)

)
. In order to avoid technical considerations

we state the results without proof and refer to [1] for details.

Theorem If the weight h is not a non-negative integer, then

Hk
(
Vect(S1),Fh(S1)

) = 0 for all k ∈ N. (6.71)

http://dx.doi.org/10.1007/978-3-319-61878-4_2


6.2 Virasoro Cohomology 183

In particularH2
(
Vect(S1),Vect(S1)

) = 0, so there exists no non-trivial deformation
of Vect(S1).

The result (6.71) implies that the non-trivial primary cohomology of Vect(S1) is
localized only on non-negative integers with weights h ∈ N. Here we briefly describe
the non-trivial first cohomology groups (k = 1) for the cases h = 0, 1, 2 that will be
useful below.

The caseh = 0 corresponds to one-cochains takingvalues in the space of functions
on the circle. It turns out that there are exactly two linearly independent, non-trivial
one-cocycles in that case, namely c̃[X ](ϕ) = X (ϕ) and

t[X ](ϕ) = X ′(ϕ) . (6.72)

The lattermay be recognized as the infinitesimal cocycle corresponding to the twisted
derivative (6.61) by differentiation.

At weight h = 1 we are in the realm of cochains taking values in the space�1(S1)

of one-forms; in particular one can show that the corresponding first cohomology is
one-dimensional, generated by the (class of the) one-cocycle

w[X ](ϕ) = X ′′(ϕ)dϕ . (6.73)

The notation w is because this cocycle is relevant to certain aspects [13] of warped
conformal symmetry [12].

Finally, when h = 2, cochains take their values in the space F2(S1) of quadratic
densities on the circle. In particular one can show that the first cohomology space is
one-dimensional, generated by the (class of the) infinitesimal Schwarzian derivative

s[X ](ϕ) = X ′′′(ϕ)dϕ2. (6.74)

One can go on and similarly classify all cohomology groups with higher weight
h. Since we will not need these results here, we refrain from displaying them (see
e.g. [14, 15]). Instead, we now relate the cocycles (6.72)–(6.74) to one-cocycles on
Diff(S1).

6.2.4 Primary Cohomology of Diff(S1)

The complete classification of density-valued cohomology groups of Diff(S1) is
beyond the scope of this presentation, sowe refer to [1] for amore detailed discussion.
Here we simply note that the Lie algebra one-cocycles mentioned above can be
integrated to non-trivial group one-cocycles:

• The cocycle (6.72) can be integrated to the twisted derivative (6.61), which we
used to build the Bott-Thurston cocycle. Indeed, for f (ϕ) = ϕ + εX (ϕ), formula
(6.61) reduces to T[ f ] = −ε t[X ].
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• The cocycle (6.73) can be integrated to

W[ f ](ϕ) = d log[( f −1)′(ϕ)] = d T[ f ](ϕ) (6.75)

where d denotes the exterior derivative on the circle. As mentioned above this
“warped derivative” has been used recently [13] to describe certain aspects of
warped conformal field theories.Note that in these terms theBott-Thurston cocycle
(6.63) is C( f, g) ∝ ∫

T[ f ] ⊗ W[ f ◦ g].
The one-cocycle (6.74) can similarly be related to theF2-valued Schwarzian deriva-
tive onDiff(S1), although the integration is somewhat less trivial than in the two cases
just described. The Schwarzian derivative is crucial for our upcoming considerations,
so the whole next section is devoted to it.

6.3 On the Schwarzian Derivative

Definition Let f ∈ Diff(S1). Then the Schwarzian derivative3 of f at ϕ is

S[ f ](ϕ) ≡ f ′′′(ϕ)

f ′(ϕ)
− 3

2

(
f ′′(ϕ)

f ′(ϕ)

)2

. (6.76)

Many references use the notation { f ;ϕ}, but we will stick to S[ f ](ϕ) instead.
In this section we investigate the many properties of the Schwarzian derivative.

We will start by showing that it is (related to) a one-cocycle on Diff(S1) taking
its values in the space F2(S1) of quadratic densities, and that it corresponds to the
Lie algebra cocycle (6.74) by differentiation. We will then show that it is related
to the Bott-Thurston cocycle by the so-called Souriau construction. We will also
describe the remarkable symmetry properties of the Schwarzian derivative under
the PSL(2, R) subgroup of Diff(S1), and obtain as a by-product the expression of
Lorentz transformations in terms of diffeomorphisms of the circle. (In Chap.9 these
transformations will turn out to be actual Lorentz transformations on the celestial
circle.)

6.3.1 The Schwarzian Derivative is a Cocycle

Here we show that the Schwarzian derivative is the one-cocycle corresponding to
(6.74) by integration. Note that the relation between (6.76) and (6.74) is obvious:
upon taking f (ϕ) = ϕ + εX (ϕ) in (6.76), one finds S[ f ] = εX ′′′ to first order in

3The name refers to H. Schwarz, who first introduced the object (6.76); it is the same Schwarz as
in the Cauchy-Schwarz inequality.

http://dx.doi.org/10.1007/978-3-319-61878-4_9
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ε. The non-trivial problem is showing that the Schwarzian derivative is actually a
cocycle:

Proposition The Schwarzian derivative (6.76) defines a one-cocycle

Diff(S1) → F2(S1) : f �→ S[ f −1](ϕ)dϕ2

valued in the space of quadratic densities on the circle.

Proof We start by noting that the definition (6.76) implies

S[ f ◦ g] = Ad∗
g−1S[ f ] + S[g] = S[g] + (g′)2S[ f ] ◦ g , (6.77)

where Ad∗ denotes the coadjoint representation (6.36) of Diff(S1). Upon defining
S̃[ f ] ≡ S[ f −1]dϕ2, one obtains a map that associates a quadratic density with any
diffeomorphism f , and which satisfies

S̃[ f ◦ g] = S̃[ f ] + (( f −1)′)2S̃[g] ◦ f −1 = S̃[ f ] + Ad∗
f S̃[g] (6.78)

by virtue of (6.77). This is precisely the cocycle identity (2.32). �

The Souriau Construction

We now study the relation between the Schwarzian derivative and the Bott-Thurston
cocycle, which follows from the so-called Souriau construction.

Definition Let G be a Lie group with Lie algebra g, C : G × G → R a real two-
cocycle on G. Then the Souriau cocycle associated with C is the map G �→ g∗ :
f �→ S[ f −1] defined by

d

dt

[
C( f, et X ) + C( f et X , f −1)

]∣∣
∣
t=0

≡ − 1

12
〈S[ f ], X〉 (6.79)

for any f ∈ G and any adjoint vector X ∈ g. (The normalization is chosen so that S
eventually coincides with the Schwarzian derivative.)

Proposition The Souriau cocycle is a one-cocycle on G valued in the space of
coadjoint vectors.

Proof SinceC is a real two-cocycle, it is clear that the left-hand side of (6.79) defines
a real linear function of X ∈ g, that is, a coadjoint vector. The latter only depends
on f so we can certainly write it as S[ f ], which defines the map S. The problem is
to show that the map f �→ S[ f −1] is actually a one-cocycle. For this we let X ∈ g,
pick two group elements f, g ∈ G, and write

〈
S[( f g)−1], X

〉 (6.79)= d

dt

[
C(g−1 f −1, et X ) + C(g−1 f −1et X , f g)

]∣∣
∣
t=0

. (6.80)

http://dx.doi.org/10.1007/978-3-319-61878-4_2
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On the other hand, if Ad∗ denotes the coadjoint representation of G, we have

〈
Ad∗

f S[g−1] + S[ f −1], X
〉
= (6.81)

(6.79)= d

dt

[
C(g−1, etAd f −1 X

) + C(g−1etAd f −1 X
, g) + C( f −1, et X ) + C( f −1et X , f )

]∣∣
∣
t=0

.

Using the cocycle identity (6.65) together with property (5.7), one can then show by
brute force that (6.81) coincides with the right-hand side of (6.80). �

In the case of the group Diff(S1), the Souriau construction yields the Schwarzian
derivative from theBott-Thurston cocycle. Let us check this explicitly: taking g(ϕ) =
ϕ + t X (ϕ) in (6.69), one finds

C( f, et X ) = − t

48π

∫ 2π

0
dϕ

[
f ′′′

f ′ −
(

f ′′

f ′

)2
]

X (ϕ),

C( f ◦ et X , f −1) = (t-independent) − t

48π

∫ 2π

0
dϕ

[
f ′′′

f ′ − 2

(
f ′′

f ′

)2
]

X (ϕ)

to first order in t . It then follows that relation (6.79) holds when S is the Schwarzian
derivative (6.76) and 〈·, ·〉 is the pairing (6.34) of Vect(S1) with its dual. Note that
by taking f (ϕ) = ϕ + sY (ϕ) with small s, the Schwarzian derivative reduces to
S[ f ] = sY ′′′. Upon differentiating with respect to s in the right-hand side of (6.79),
we recover precisely the Gelfand-Fuks cocycle (6.43).

Virasoro Universality

At this point the cohomological constructions of the previous pages are starting to
fit in a global picture of Virasoro cohomology: Eq. (6.70) relates the Bott-Thurston
cocycle to the Gelfand-Fuks cocycle (6.43), while (6.79) relates it to the Schwarzian
derivative, which in turn is the integral of the infinitesimal cocycle (6.74). In addition
the integral of the latter with a vector field on the circle reproduces the Gelfand-Fuks
cocycle. The common feature of all these expressions is the occurrence of third
derivatives such as f ′′′ or X ′′′, which will indeed play a key role in the sequel (and
give rise to the term m3 in (6.44)).

In this sense, all these cocycles are really one and the same quantity, albeit
expressed in very different ways. Depending on one’s viewpoint, one may decide
that the most fundamental quantity is the Gelfand-Fuks cocycle, or the Schwarzian
derivative, or Bott-Thurston. Our point of viewwill be that the Bott-Thurston cocycle
is the most fundamental of them all, since it yields the other ones by differentiation:

http://dx.doi.org/10.1007/978-3-319-61878-4_5
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6.3.2 Projective Invariance of the Schwarzian

There exists a deep relation between the circle, the projective line and the Schwarzian
derivative [10], which in turn leads to powerful symmetry properties under the group
SL(2, R)/Z2 = PSL(2, R). Our goal here is to explore this relation. Accordingly
we start with a short detour through one-dimensional projective geometry, before
recovering the Schwarzian derivative as a quantity that measures the extent to which
diffeomorphisms deform the projective structure. Along the way we will encounter
the expression of Lorentz transformations in terms of diffeomorphisms of the circle.

The Projective Line

Consider the plane R
2 and define the projective line RP1 to be the space of its one-

dimensional subspaces. Equivalently RP1 is the space of straight lines in R
2 going

through the origin, i.e. a quotient of R
2\{(0, 0)} by the equivalence relation

(x, y) ∼ (x ′, y′) if ∃ λ ∈ R
∗ such that (x, y) = λ(x ′, y′).

Denoting by [(x, y)] the equivalence class of (x, y) ∈ R
2, the projective line is thus

RP1 = {[(x, y)]∣∣(x, y) ∈ R
2\{(0, 0)}}. (6.82)

In topological terms the projective line is a circle centred at the origin in R
2 with

antipodal points identified. This is to say that RP1 ∼= S1/Z2, where Z2 acts on S1 by
rotations. Since any group Zn acting on the circle by rotations of 2π/n is such that
S1/Zn

∼= S1, the projective line is actually diffeomorphic to a circle:

RP1 ∼= S1. (6.83)

As a result, all considerations concerning the group of diffeomorphisms of S1 can
be recast in terms of projective geometry, and vice-versa.
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Fig. 6.3 The stereographic coordinate (6.85) is obtained by projecting the points of a unit circle
in the (X, Y ) plane on the Y axis, along a straight line that goes through the “east pole” (1, 0).
Upon writing X = cosϕ and Y = sinϕ and declaring that the projective coordinate ζ is minus the
Y coordinate of the projection, one obtains (6.85). The minus sign is included so as to preserve the
orientation of the circle in the sense that dζ/dϕ > 0

The diffeomorphism (6.83) can be made explicit in terms of well chosen coordi-
nates. Indeed, in terms of (6.82), the projective line is a union RP1 = {[(ζ, 1)]|ζ ∈
R} ∪ {[(1, 0)]}, so the projective coordinate

ζ ≡ x/y (6.84)

is a local coordinate on RP1 that misses only one point, namely the class of (1, 0).
In this sense the projective line is a real line R with an extra “point at infinity”.

This is exactly the same situation as with the stereographic coordinate on a circle.
For later convenience we define this coordinate in terms of an angular coordinate ϕ
on the circle by

ζ = −cot(ϕ/2) = eiϕ + 1

ieiϕ − i
(6.85)

(see Fig. 6.3). The diffeomorphism (6.83) is then obtained by identifying this stere-
ographic coordinate with the projective coordinate (6.84).

Projective Transformations

The projective line inherits a symmetry from the linear action of GL(2, R) on R
2.

Explicitly, an invertible matrix (
a b
c d

)
(6.86)

acts on the coordinate (6.84) as a projective transformation

ζ �→ aζ + b

cζ + d
. (6.87)
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Any such transformation is independent of the determinant of (6.86), which we can
therefore set to one without loss of generality. Furthermore the overall sign of the
matrix is irrelevant, so the transformations (6.87) span a projective group

PGL(2, R) ≡ GL(2, R)/R
∗ ∼= SL(2, R)/Z2 ≡ PSL(2, R).

According to (4.83) this is the connected Lorentz group in three dimensions.
Upon identifying the projective coordinate (6.84) with the stereographic coordi-

nate (6.85), the transformation (6.87) can be reformulated in terms of the angular
coordinate ϕ. Using (6.87) and the inverse of (6.85), we find that projective trans-
formations act on eiϕ according to

eiϕ �→ ei f (ϕ) = Aeiϕ + B

B̄eiϕ + Ā
(6.88)

where the complex coefficients

A = 1

2
(a + ib − ic + d), B = 1

2
(a − ib − ic − d) (6.89)

are such that |A|2 − |B|2 = 1. The family of transformations (6.88) spans a subgroup
PSL(2, R) of Diff(S1) that we already anticipated in (6.3). In Sect. 9.1 we shall
interpret that subgroup as the Lorentz group acting on null infinity. For infinitesimal
parameters A = 1 + iε and B = ε (with ε ∈ R and ε ∈ C), formula (6.88) becomes
an infinitesimal diffeomorphism

f (ϕ) = ϕ + 2ε + 2Re(ε) cosϕ − 2Re(ε) sin(ϕ).

This is an sl(2, R) transformation generated by the vector fields �0, �1 and �−1

mentioned below (6.24). Conversely, any transformation (6.88) belongs to the flow
of an sl(2, R) vector field.

Remark The relation between S1 and RP1 discussed here has a complex analogue
CP1 ∼= S2, where CP1 is the complex projective line. In this generalization the
projective coordinate (6.84) becomes a complex coordinate z and coincides with the
stereographic coordinate (1.4) of S2. The projective transformations of CP1 then are
Möbius transformations (1.6), i.e. Lorentz transformations in four dimensions.

Cross Ratios and the Schwarzian Derivative

Given the projective line RP1, one may look for projective invariants, i.e. quantities
that are left invariant by the transformations (6.87). For example, consider four points
on RP1 whose projective coordinates are ζ1, ζ2, ζ3, ζ4 and define their cross ratio

[ζ1, ζ2, ζ3, ζ4] ≡ (ζ1 − ζ3)(ζ2 − ζ4)

(ζ1 − ζ2)(ζ3 − ζ4)
.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_1
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This number is a projective invariant, as one can verify by direct computation. Now
take a diffeomorphism f : S1 → S1, where we think of S1 as a projective line (6.83).
This diffeomorphism can be written in terms of the projective coordinate (6.84),
giving rise to a map ζ �→ f(ζ). The explicit correspondence between f and f follows
from (6.85) and reads

f
(−cot(ϕ/2)

) = −cot
(

f (ϕ)/2
)
. (6.90)

In general, f is not a projective transformation (6.87) and therefore spoils the projec-
tive structure of S1. This can bemeasured by taking a point with coordinate ζ onRP1

together with three other nearby points, then evaluating the change in their cross-ratio
under the action of f. Let therefore ζ1 = ζ + ε, ζ2 = ζ + 2ε and ζ3 = ζ + 3ε be three
points close to ζ. These points move under the action of f, and one can show that

[
f(ζ), f(ζ1), f(ζ2), f(ζ3)

] = [ζ, ζ1, ζ2, ζ3] − 2ε2 S[f](ζ) + O(|ε|3)

whereS is the Schwarzian derivative (6.76). Thus we have recovered the Schwarzian
derivative as a measuring device that tells us how much the diffeomorphism f spoils
the projective structure of RP1. From this one concludes:

Proposition Let f,g be diffeomorphisms of the projective line. Then

S[f ◦ g](ζ) = S[g](ζ) (6.91)

if and only if f is a projective transformation (6.87). In particular, S[f](ζ) = 0 if and
only if f(ζ) is a projective transformation of the form (6.87).

In technical terms, a one-cocycle S on a group G with a subgroup H is said to be
H-relative ifS[h] = 0 for all h ∈ H . Thus (6.91) says that the Schwarzian derivative
is a PSL(2, R)-relative cocycle. In conformal field theory this corresponds to the
statement that the Schwarzian derivative is blind to Möbius transformations (1.6).

Schwarzians on the Circle

All the above considerations can be reformulated in terms of the angular coordinateϕ
using the correspondence (6.85). Herewework out this rewriting for projective trans-
formations (6.88). To begin, note that (6.88) precisely takes the form of a projective
transformation (6.87) in terms of the coordinate eiϕ. Accordingly,

S
[
ei f (ϕ)

]
(eiϕ) = 0. (6.92)

In order to go from (6.92) to S[ f ](ϕ) we use the cocycle identity (6.77) repeatedly.
First we write

S[ f ](ϕ) = S[log(ei f (ϕ))](ϕ)
(6.77)= S[ei f (ϕ)](ϕ) + (

i f ′(ϕ)ei f (ϕ)
)2
S[log](ei f (ϕ)) ,

(6.93)

http://dx.doi.org/10.1007/978-3-319-61878-4_1
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where S[log](x)
(6.76)= 1

2x2 . The first term on the far right-hand side of (6.93) involves

S[ei f (ϕ)](ϕ)
(6.77)= S[eiϕ](ϕ) + (

(eiϕ)′
)2
S[ei f (ϕ)](eiϕ)

(6.92)= S[eiϕ](ϕ)
(6.76)= 1

2
,

which finally gives

S[ f ](ϕ) = 1

2

[
1 − (

f ′(ϕ)
)2]

(6.94)

when f (ϕ) is given by (6.88). We will put this formula to use in the next chapter.
Note that these observations can be generalized to infinitely many other families

of diffeomorphisms of the circle. Indeed, pick a positive integer n ∈ N
∗ and take

formula (6.88) with ϕ replaced by nϕ and f (ϕ) replaced by n f (ϕ):

ein f (ϕ) = Aeinϕ + B

B̄einϕ + Ā
, |A|2 − |B|2 = 1. (6.95)

This defines a diffeomorphism of the circle, and the family of such diffeomorphisms
also spans a subgroup of Diff(S1) which is locally isomorphic to SL(2, R). The
difference with respect to the case n = 1 discussed above is that the corresponding
Lie algebra sl(2, R) is generated by �0, �n and �−n , and that the actual group spanned
by such transformations is an n-fold cover of PSL(2, R); we shall denote this cover by
SL(n)(2, R)/Z2 ≡ PSL(n)(2, R). One can also verify that the Schwarzian derivative
of the diffeomorphism f defined by (6.95) satisfies

S[ f ](ϕ) = n2

2

[
1 − ( f ′(ϕ))2

]
, (6.96)

generalizing the case n = 1 of (6.94).

Remark One can show that the restriction of the Bott-Thurston cocycle (6.69) to
the PSL(2, R) subgroup (6.88) coincides with the unique non-trivial two-cocycle
on PSL(2, R). The latter acts on the hyperbolic plane H

2 by isometries of the form
(6.87), where ζ ∈ C has positive imaginary part, and the two-cocycle associates
with two such transformations f,g the area of the triangle with corners i , f−1(i) and
g−1 ◦ f−1(i). See [1] for details.

6.4 The Virasoro Group

We are now in position to describe the central extension of Diff(S1). This discus-
sion is crucial for our purposes, as all symmetry groups of the later chapters will
be variations on the basic Virasoro pattern. As announced above, our viewpoint
is that the fundamental Virasoro structure is that of the group, from which the
rest follows. Accordingly we start this section by reviewing general properties of
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centrally extended groups, which we then apply to the Virasoro group whose adjoint
and coadjoint representations follow by differentiation. We also define the Virasoro
algebra and end by displaying the Kirillov-Kostant Poisson bracket on its dual.

6.4.1 Centrally Extended Groups Revisited

Let Ĝ be a central extensionof someLie groupG,with groupoperation (2.11) in terms
of some two-cocycle C. Here we work out its adjoint and coadjoint representations.

Adjoint Representation

Since the group Ĝ consists of pairs ( f,λ) where f ∈ G and λ ∈ R, its Lie algebra ĝ
consists of pairs (X,λ) where X ∈ g. The adjoint representation of Ĝ then follows
from (5.6): for X ∈ g, f ∈ G and λ,μ ∈ R we find

Âd( f,μ)(X,λ) = d

dt

[(
f ◦ et X ◦ f −1, tλ + C( f, et X ) + C( f ◦ et X , f −1)

)]∣∣
∣
t=0

(6.97)

where the hat in Âd stresses that this is the adjoint representation of a centrally
extended group, as opposed to that of G. Note that μ acts trivially, so we can lighten
the notation by writing Âd f instead of Âd( f,μ). This follows from the fact that Ĝ is
a central extension of G so that “central elements” (i.e. the real numbers that enter
in the second slot of ( f,μ)) act trivially on everything, which is a general property
of centrally extended groups.

It then remains to compute the two entries on the right-hand side (6.97). The
first entry yields the adjoint representation of G, while the second is precisely the
expression (6.79) defining the Souriau cocycle S associated with C. We conclude
that the adjoint representation of Ĝ reads

Âd f (X,λ) =
(
Ad f X,λ − 1

12
〈S[ f ], X〉

)
(6.98)

where the “Ad” on the right-hand side is the adjoint representation of G.

Centrally Extended Algebra

From the adjoint representation of a group one can read off the Lie brackets (5.8)
of its algebra. Let therefore (X,λ) and (Y,μ) belong to the centrally extended Lie
algebra ĝ. Using (6.98) we find

[
(X,λ), (Y,μ)

] = d

dt

[(
Adet X Y,μ − 1

12

〈
S[et X ], Y

〉 )
]

t=0

. (6.99)

The first entry on the right-hand side is the same as expression (5.8) in G; accordingly
it boils down to the standard Lie bracket of g, which we denote as [X, Y ]. The second
entry involves the differential of the Souriau cocycle,

http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_5
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s[X ] ≡ d

dt
S[et X ]∣∣t=0 , (6.100)

paired with Y ∈ g. We therefore define a two-cocycle c on g by

c(X, Y ) ≡ − 1

12
〈s[X ], Y 〉 (6.101)

and the bracket of ĝ takes the centrally extended form (2.6):

[
(X,λ), (Y, ρ)

]
= ([X, Y ], c(X, Y )

) =
(
[X, Y ],− 1

12
〈s[X ], Y 〉

)
. (6.102)

The fact that (6.101) is indeed a two-cocycle is inherited from the Souriau cocycle.
Note that the central terms λ,μ commute with everything, as they should. In terms
of Lie algebra generators the bracket (6.102) takes the general form (2.27).

Coadjoint Representation

The Lie algebra ĝ is spanned by pairs (X,λ), so its dual consists of pairs (p, c)where
p belongs to g∗ while c ∈ R is a real number, paired with adjoint vectors according
to 〈

(p, c), (X,λ)
〉 = 〈p, X〉 + cλ (6.103)

where the pairing 〈·, ·〉 on the right-hand side is that of g∗ with g. The number c is
known as a central charge. The coadjoint transformation law of (p, c) follows from
the definition (5.10). In particular, since central elements act trivially in the adjoint
representation (6.97), we can safely write Âd∗

( f,λ) ≡ Âd∗
f for any ( f,λ) ∈ Ĝ, where

the hat on top of Ad∗ indicates that we refer to a representation of the centrally
extended group. If then (X,λ) ∈ ĝ and (p, c) ∈ ĝ ∗, one obtains

〈
Âd∗

f (p, c), (X,λ)
〉 (6.98)=

〈
(p, c),

(
Ad f −1 ,λ − 1

12

〈
S[ f −1], X

〉 )〉

(6.103)= 〈
p,Ad f −1 X

〉+ cλ − c

12

〈
S[ f −1], X

〉

where the pairing 〈·, ·〉 on the right-hand side of the last equation is the centreless
pairing of g∗ with g. In particular the first term is simply the coadjoint representation
of G. Removing the dependence on X , we conclude that

Âd∗
f (p, c) =

(
Ad∗

f p − c

12
S[ f −1], c

)
. (6.104)

Note that the central charge c is left invariant by the coadjoint representation, as it
should. Crucially, it also appears in the first entry and thus affects the transformation
law of p. In abstract terms, formula (6.104) is the affine G-module (2.33) associated
with the Souriau cocycle.

http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_2
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The coadjoint action can be differentiated, which yields a representation (5.11)
of the Lie algebra ĝ. Using (6.102) with the two-cocycle (6.101) one finds

âd∗
X (p, c) =

(
ad∗

X p + c

12
s[X ], 0

)
(6.105)

where the ad∗ on the right-hand side is the coadjoint representation of g while s is
the infinitesimal Souriau cocycle (6.100). In the remainder of this section we apply
these considerations to the Virasoro group.

6.4.2 Virasoro Group

Definition The Virasoro group is the universal central extension of Diff(S1). It is
diffeomorphic to the product Diff(S1) × R and its elements are pairs ( f,λ) where
f ∈ Diff(S1) and λ ∈ R, with a group operation (2.11) whereC is the Bott-Thurston
cocycle (6.69). Explicitly:

( f,λ) · (g,μ) =
(

f ◦ g,λ + μ + C( f, g)
)
. (6.106)

We shall denote the Virasoro group by D̂iff(S1).
As in the previous sections we abuse notation and terminology by simply call-

ing “Virasoro group” what is really the universal cover of the maximal connected

subgroup of the Virasoro group. It should in fact be written as
̂
D̃iff+(S1), while we

denote it by D̂iff(S1) to reduce clutter.

6.4.3 Adjoint Representation and Virasoro Algebra

As a vector space, the Lie algebra of the Virasoro group is equivalent to the direct
sum Vect(S1) ⊕ R. In particular, Virasoro adjoint vectors are pairs (X,λ) where
X = X (ϕ)∂ϕ is a vector field on the circle and λ is a real number. The adjoint
representation of the Virasoro group follows from the group operation (6.106) and
the definition (5.6). Thus the adjoint representation takes the form (6.98), where the
adjoint representation of Diff(S1) is the transformation law (6.18) of vector fields,
while S is the Schwarzian derivative (6.76). This result will be instrumental in our
definition of the centrally extended BMS3 group in Sect. 9.2.

The adjoint representation of a group yields the Lie brackets (5.8) of its algebra.
In the present case this definition leads to an awkward sign (6.21), which we absorb
by declaring that the Lie bracket of the Virasoro algebra is defined by

http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_5
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[
(X,λ), (Y,μ)

] ≡ − d

dt

[
Âdet X (Y,μ)

]
t=0 . (6.107)

With this definition formula (6.99) holds up to an overall minus sign on the right-
hand side. Using then the infinitesimal Schwarzian derivative (6.74), the pairing
(6.34) allows us to recognize the Gelfand-Fuks cocycle (6.43) in 〈s[X ], Y 〉. Thus the
Lie bracket of the algebra of the Virasoro group takes the form (6.102), or explicitly

[
(X,λ), (Y,μ)

] = ([X, Y ], c(X, Y )
)

(6.108)

where [X, Y ] is the usual Lie bracket of vector fields.
DefinitionTheVirasoro algebra is theLie algebra V̂ect(S1) = Vect(S1) ⊕ R endowed
with the Lie bracket (6.108). It is the universal central extension of Vect(S1).4

In the physics literature it is customary to rewrite the Virasoro algebra in a form
analogous to (6.24). Let us therefore define the basis elements

Lm ≡ (�m, 0), Z ≡ (0, 1) (6.109)

where the �m’s are given by (6.23). The bracket (6.108) then yields [Z,Z] =
[Z,Lm] = 0, as well as

i[Lm,Ln] = i[(�m, 0), (�n, 0)] (6.108)= (i[�m, �n], ic(�m, �n)) .

Using the Witt algebra (6.24) and Eq. (6.44), we can rewrite this as

i[Lm,Ln] = (m − n)Lm+n + Z
12

m3δm+n,0 , (6.110)

which is indeed the standard expression of the Virasoro algebra [3–5]. In this form
it can be seen as a central extension of the Witt algebra (6.24), with a central term
involving the celebratedm3δm+n,0. Asmentioned below (6.44), the latter is a remnant
of the third derivative of Y in the Gelfand-Fuks cocycle (6.43), while the δm+n,0

follows from the integration over the circle and reflects the fact that the cocycle is
invariant under rotations.

Remark The generator Z of Eq. (6.109) should rightfully be called the “central
charge” of the Virasoro algebra, since it is a Lie algebra element that commutes with
everything. However, in keeping with the standard physics terminology, we will also
use the word “central charge” to refer to the dual of Z , which is just a real number
c (see the coadjoint representation below). This ambiguous terminology should not
lead to any confusion.

4Universality follows from the fact that the first real cohomology of Vect(S1) vanishes.
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6.4.4 Coadjoint Representation

Coadjoint Vectors

Virasoro adjoint vectors are pairs (X,λ)where X is a vector field andλ a real number.
Accordingly the smooth dual of the Virasoro algebra consists of pairs (p, c) where
p = p(ϕ)dϕ2 is a quadratic density and c ∈ R is a real number, paired with adjoint
vectors according to the centrally extended generalization (6.103) of (6.34):

〈
(p, c), (X,λ)

〉 ≡ 1

2π

∫ 2π

0
dϕ p(ϕ)X (ϕ) + cλ. (6.111)

We refer to pairs (p, c) as Virasoro coadjoint vectors; they span the space V̂ect(S1)∗.
It is worth mentioning that coadjoint vectors are crucial physical quantities in all

theories enjoying Diff(S1) symmetry, and in particular all conformal field theories in
two dimensions. Indeed the function p(ϕ) is nothing but (the chiral component of) a
CFT stress tensor, while c is a CFT central charge. Expression (6.111) then coincides
(up to central terms) with the Noether charge associated with a symmetry generator
X (ϕ)∂ϕ, seen as an infinitesimal conformal transformation. More precisely, in a
CFT on a Lorentzian cylinder, the coordinate ϕ would be replaced by one of the
two light-cone coordinates x± and p(ϕ) would become p(x+) or p̄(x−). This is
consistent with the interpretation of coadjoint vectors as Noether currents, thanks to
the momentum maps of Sect. 5.1.

Remark Our notation is somewhat non-standard in that we denote by p(ϕ) what
would normally be written as T (ϕ), where T stands for the stress tensor. This choice
has to dowith ourmotivations: we shall see in Chap. 9 that Virasoro coadjoint vectors
play the role of supermomentum vectors for the BMS3 group. They will be infinite-
dimensional generalizations of the Poincaré momenta pμ, so the notation p(ϕ) is
introduced here to suggest thinking of coadjoint vectors as quantities related to energy
and momentum. In fact this interpretation also holds in CFT, since a stress tensor is
nothing but an energy-momentum density.

Coadjoint Representation

The transformation law of Virasoro coadjoint vectors follows from the definition
(5.10). In particular, since central elements act trivially in the adjoint representation
(6.97), we may write Âd∗

( f,λ) ≡ Âd∗
f for any ( f,λ) belonging to the Virasoro group.

If then we let (X,λ) ∈ V̂ect(S1) be an adjoint vector and (p, c) ∈ V̂ect(S1)∗ be a
coadjoint one, formula (6.104) still holds upon lettingS be the Schwarzian derivative.
The central charge c is left invariant by the coadjoint representation, as it should, but
it also affects the transformation law of p(ϕ). Accordingly, from now on we often
write the coadjoint representation of the Virasoro group without including a second
slot for the central charge, since the latter is invariant. With this simplified notation
formula (6.104) boils down to

http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_5
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Âd∗
f p = Ad∗

f p − c

12
S[ f −1] (6.112)

For future reference it will be useful to rewrite this in detail, in terms of functions on
the circle. Evaluating both sides of the equation at a point ϕ on the circle, we obtain

(
Âd∗

f p
)
(ϕ) = [

( f −1)′(ϕ)
]2

p( f −1(ϕ)) − c

12
S[ f −1](ϕ) (6.113)

by virtue of the centreless coadjoint action (6.36). The formulas are much simpler if
we evaluate Eq. (6.112) at f (ϕ); using the cocycle identity (6.77) we find

(
Âd∗

f p
)
( f (ϕ)) = 1

( f ′(ϕ))2

[
p(ϕ) + c

12
S[ f ](ϕ)

]
. (6.114)

This is a transparent expression of the coadjoint representation of the Virasoro group,
with S[ f ](ϕ) given by (6.76). It is the most important equation of this chapter. We
will sometimes refer to the two terms on the right-hand side as the “homogeneous
term” and the “central” or “inhomogeneous term”, respectively. The formula can also
be recognized as the transformation law of a CFT stress tensor p(ϕ) with a central
charge c; in that context p(ϕ) is said to be a quasi-primary field with weight two. In
the next chapter we will classify the orbits of this action, which in Chap.9 will turn
out to be supermomentum orbits labelling BMS particles in three dimensions.

The differential (6.105) of formula (6.114) is a representation of the Virasoro
algebra. Taking an infinitesimal diffeomorphism f (ϕ) = ϕ + εX (ϕ), we treat the
homogeneous term Ad∗

f p as in (6.30) and find Ad∗
f p = p − ε(X p′ + 2X ′ p) to first

order in ε (both sides of the equation are evaluated at the same point). For the
Schwarzian derivative we use S[ f −1] = −εX ′′′. Defining

âd∗
X p(ϕ) ≡ − (Âd∗

f p)(ϕ) − p(ϕ)

ε

as in (6.31), we end up with the coadjoint representation of the Virasoro algebra:

âd∗
X p = X p′ + 2X ′ p − c

12
X ′′′, (6.115)

where both sides are evaluated at the same point.5 This is the Virasoro version of
Eq. (6.105). In the homogeneous term we recognize the primary transformation law
(6.32), while the central term involves the infinitesimal Schwarzian (6.74).

5Equation (6.115) can also be written as âd∗
X (p, c) ≡ −(p, c) ◦ âdX , where the infinitesimal

adjoint representation of the Virasoro algebra is defined with a sign such that that âdX (Y,μ) =([X, Y ], c(X, Y )
)
coincides with the bracket (6.108).

http://dx.doi.org/10.1007/978-3-319-61878-4_9
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6.4.5 Kirillov-Kostant Bracket

In order to make contact with physics, let us describe the Kirillov-Kostant Pois-
son bracket (5.23) for the Virasoro group. In that case the bracket eats functions
on V̂ect(S1)∗, i.e. functionals F[ p(ϕ), c]. In practice, since any quadratic density
p(ϕ)dϕ2 can be Fourier-expanded as

p(ϕ) =
∑

m∈Z
pme−imϕ, (6.116)

the Fourier modes pm = p∗−m define global coordinates onVect(S1)
∗. Any functional

F[ p(ϕ), c] can then be seen as a function of the variables pm and c, so it suffices to
know the Poisson brackets of these variables in order to find the Poisson brackets of
functions on V̂ect(S1)∗.

Now recall the basis (6.109) of the Virasoro algebra and let {(Lm)∗,Z∗} denote
the corresponding dual basis, such that 〈L∗

m,Ln〉 = δmn and 〈Z∗,Z〉 = 1. Using the
pairing (6.111) we find that, as coadjoint vectors,

(Lm)∗ = (
(�m)∗, 0

) = (
e−imϕdϕ2, 0

)
, Z∗ = (0, 1). (6.117)

Thus, when writing a quadratic density as a Fourier series (6.116), the parameters
pm, c are actually coordinates on V̂ect(S1)∗ defined with respect to the basis (6.117):

(
p(ϕ)dϕ2, c

) =
∑

m∈Z
pmL∗

m + cZ∗.

Accordingly, Eq. (5.28) implies that the Kirillov-Kostant Poisson bracket of these
coordinates reproduces the Lie brackets (6.110):

i{pm, pn} = (m − n)pm+n + c

12
m3δm+n,0 , (6.118)

while all Poisson brackets involving the central charge c vanish. The key difference
between (6.118) and (6.110) is that the latter is an abstract Lie bracket, while the
former is its phase space realization.

The bracket (6.118) is well-known to physicists. Indeed, the standard way to
introduce the Virasoro algebra in CFT textbooks is to expand the stress tensor in
modes as in (6.116), and then compute their Poisson brackets. Upon quantization,
the operator i {̂·, ·} coincides with the commutator [·, ·] and the resulting quantum
commutators span a Virasoro algebra (6.110)–(6.118), generally with a non-zero
central charge c.

Note that each coordinate pm can be seen as the function on V̂ect(S1)∗ that maps
(p, c) on 〈(p, c),Lm〉. As mentioned below (6.111), the object 〈(p, c),Lm〉 may
be thought of as the Noether charge associated with the symmetry generator Lm ,

http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_5
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so the Poisson bracket (6.118) can be interpreted as a Poisson bracket of Noether
charges. We shall see in Chaps. 8 and 9 that the Poisson brackets of surface charges
in three-dimensional gravity coincide with the Kirillov-Kostant brackets on the dual
of suitable asymptotic symmetry algebras (albeit with definite values of the central
charges).
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Chapter 7
Virasoro Coadjoint Orbits

In this chapter we classify the coadjoint orbits of the Virasoro group. Aside from
their usefulness in the study of conformal symmetry, they are crucial for our purposes
because they will turn out to coincide with the supermomentum orbits that classify
BMS3 particles. As we shall see, despite being infinite-dimensional, these orbits
behave very much like the finite-dimensional coadjoint orbits of SL(2, R).

The plan is as follows. In Sect. 7.1 we describe the problem and explain how it
can be addressed in terms of two invariant quantities, namely the conjugacy class
of a certain monodromy matrix and the winding number of a related curve taking
its values in a circle. We then use this approach in Sect. 7.2 to display explicit orbit
representatives. Finally, Sect. 7.3 is devoted to a discussion of energy positivity in
the Virasoro context.

Coadjoint orbits of the Virasoro group were first classified in [1, 2] and are
described in many later papers [3–6] and textbooks [7, 8]. The presentation of this
chapter follows [9].

7.1 Coadjoint Orbits of the Virasoro Group

In this sectionwe explain themethods used to classify coadjoint orbits of theVirasoro
group. We start by describing the simple (but pathological) classification of orbits
at zero central charge, before discussing certain basic aspects of centrally extended
orbits. We then turn to the correspondence between Virasoro coadjoint vectors and
Hill’s operators, which yields two invariant quantities that can be used to classify the
orbits. These invariants are (i) the conjugacy class of a monodromy matrix and (ii)
the winding number of a curve on the real line whose target space is a circle.
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7.1.1 Centerless Coadjoint Orbits

We start our investigation with a problem that is much simpler than the full classifi-
cation of coadjoint orbits of the Virasoro group D̂iff(S1), namely the classification
of orbits at vanishing central charge, c = 0. Those are orbits of the centreless group
Diff(S1) = D̃iff+(S1), whose coadjoint representation is given by Eq. (6.36).

Let us pick a coadjoint vector
(

p(ϕ)dϕ2, c = 0
)
and denote its coadjoint orbit

by W(p,0). For now, suppose for simplicity that p(ϕ) is strictly positive for all ϕ ∈
[0, 2π]. One can then verify that the integral

√
M ≡ 1

2π

∫ 2π

0
dϕ
√

p(ϕ) (7.1)

is invariant under the action (6.36) of Diff(S1) on p. This actually follows from the
fact that p is a quadratic density, so its square root is a one-form and can be integrated
on the circle in a Diff(S1)-invariant way. With this notation the diffeomorphism

f (ϕ) ≡
∫ ϕ

0
dφ

√
p(φ)

M
(7.2)

maps p(ϕ) on the constant coadjoint vector f · p = M . Thus any strictly positive
coadjoint vector p belongs to the orbit of a constant M given by (7.1), which is the
“mass” associated with p(ϕ). The stabilizer of p(ϕ) = M is the set of diffeomor-
phisms f such that M = M/( f ′(ϕ))2. Since we set f ′ > 0 to preserve orientation,
the only solution is f ′ = 1 and the stabilizer of p = M is the group U(1) of rigid
rotations f (ϕ) = ϕ + θ. Thus the orbit of any strictly positive coadjoint vector is
diffeomorphic to the quotient space Diff(S1)/S1. The same analysis applies, up to
signs, to strictly negative coadjoint vectors. Note that Diff(S1)/S1 has codimension
one in Diff(S1).

Of course, coadjoint vectors may well vanish at certain points of the circle, and
in particular they can change sign; the previous analysis must then be modified. For
example, suppose p(ϕ) is everywhere non-negative, but vanishes at the point ϕ = 0.
Wewill say that p(ϕ) has a “double zero” atϕ = 0, since both p(ϕ) and p′(ϕ) vanish
there. Then the integral (7.1) is still invariant on the orbit of p, but it is no longer
true that p(ϕ) can be mapped on a constant because the corresponding would-be
diffeomorphism (7.2) is degenerate: its derivative vanishes at ϕ = 0. We conclude
that the orbit of p is now specified by two invariant statements: first, the fact that the
integral of

√
p takes the value (7.1), and second, the fact that p(ϕ) has one double

zero. More generally, if p(ϕ) is everywhere non-negative but has N double zeros at
the points ϕ = ϕ1, . . . ,ϕN , then the N integrals

∫ ϕi+1

ϕi

dϕ
√

p(ϕ)

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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(whereϕN+1 ≡ ϕ1) are invariants specifying the orbit of p. Theorbit is labelled by the
values of these integrals together with their ordering (which is Diff+(S1)-invariant)
and the statement that all its elements have exactly N double zeros. In particular, the
orbit has codimension N in Diff(S1) since it is specified by N continuous parameters.

A similar treatment can be applied to coadjoint vectors that change sign on the
circle, i.e. functions p(ϕ)having simple zeros (where p′ does not vanish). Thenumber
of such points is always even since p(ϕ) is 2π-periodic, so let us suppose p(ϕ) has
2N ′ simple zeros. Then the integral of

√|p(ϕ)| between any two consecutive zeros is
Diff(S1)-invariant as before, so the orbit of p is specified by the 2N ′ values of these
integrals, by their ordering and by the sign of p(ϕ) on one of the intervals where
it does not vanish. From this we also deduce the general classification of orbits for
quadratic densities with a finite number of zeros: if p(ϕ) has N double zeros and
2N ′ simple zeros, its orbit is specified by the values of N + 2N ′ integral invariants
of the form ∫ ϕi+1

ϕi

dϕ
√|p(ϕ)| (7.3)

(where ϕi and ϕi+1 are any two consecutive zeros), together with the ordering of
these invariants, the specification of whether the points ϕi and ϕi+1 are simple or
double zeros, and the sign of p on a given interval, say [ϕ1,ϕ2]. The orbit of p then
has codimension N +2N ′ in Diff(S1); in particular there exist orbits with arbitrarily
high codimension.

As we can see here, centreless coadjoint orbits are somewhat messy: they can
be specified by an arbitrarily large number of parameters. Besides, we haven’t even
discussed the case of coadjoint vectors p(ϕ) that vanish on a whole open set in
S1 — these have an infinite-dimensional little group and their orbits have infinite
codimension in Diff(S1). In particular, coadjoint orbits can have arbitrary (even or
odd) codimension in Diff(S1). This is in sharp contrast with finite-dimensional Lie
groups, where all coadjoint orbits are even-dimensional since they are symplectic
manifolds. In the case of Diff(S1), coadjoint orbits are still symplectic, but they need
not satisfy “codimension parity”: the fact that a given orbit has codimension N does
not imply that there are no orbits with codimension N ± 1. We shall see that this
pathology does not occur when the Virasoro central charge is non-zero, where all
orbits have codimension one or three.

7.1.2 Basic Properties of Centrally Extended Orbits

Let us turn to coadjoint orbits of the Virasoro group at non-zero central charge c �= 0.
From now on we pick some non-zero value for c and we stick to it; for definiteness
we take c > 0, although all our considerations also apply to c < 0 after a few
straightforward sign modifications. In principle our goal is to address the following
problems:
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1. Classify all Virasoro coadjoint orbits with central charge c.
2. Find a non-redundant, exhaustive set of orbit representatives.
3. Given a coadjoint vector p(ϕ)dϕ2 (at central charge c), write down the diffeo-

morphism f ∈ Diff(S1) that maps it on one of the orbit representatives.

If we manage to satisfy these criteria, we will have fully classified the orbits of the
Virasoro group (at non-zero central charge).

While this task was relatively easy in the centreless case thanks to the integral
invariants (7.3), it turns out to be much more complicated in the centrally extended
case; the remainder of this chapter is devoted to orbits at non-zero central charge,
where the classification will rely on elaborate techniques involving monodromy
matrices. For now we simply describe the most elementary aspects of some of these
orbits.

Stabilizers

Suppose we are given a coadjoint vector
(

p(ϕ)dϕ2, c
)
. Since the central charge is

invariant, the orbit of (p, c) under the Virasoro group can be represented as

W(p,c) =
{
Âd∗

f p
∣∣∣ f ∈ Diff(S1)

}
, (7.4)

where Âd
∗
f p is given by (6.114). It is an infinite-dimensional manifold, so obtaining

information on its geometry sounds at first like an impossible task. Accordingly,
instead of actually trying to picture the orbit as such, let us look for the stabilizer G p

of p, which is a subgroup of Diff(S1) such that

W(p,c)
∼= D̂iff(S1)/(G p × R) ∼= Diff(S1)/G p . (7.5)

The stabilizer consists of diffeomorphisms f (ϕ) such that

p( f (ϕ)) = 1

( f ′(ϕ))2

[
p(ϕ) + c

12
S[ f ](ϕ)

]
. (7.6)

Given p(ϕ), this is a highly non-linear differential equation for f (ϕ); if we could
actually solve it, we would know the stabilizer.

To make things simpler let us look only for the Lie algebra of the stabilizer, rather
than the stabilizer itself. This algebra is spanned by vector fields X that leave p(ϕ)

invariant, which according to (6.115) amounts to the requirement

X p′ + 2X ′ p − c

12
X ′′′ = 0 . (7.7)

This is already a lot easier than Eq. (7.6): it is a linear third order equation for the
function X (ϕ), assuming that the function p(ϕ) is known. A number of important
consequences follow from this equation. The first is that, for non-zero c, it admits at
most three linearly independent solutions:

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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Lemma The stabilizer of p(ϕ)dϕ2 at non-zero central charge is at most three-
dimensional.

This is already a sharp difference with respect to the centreless case, where sta-
bilizers had arbitrarily high dimension. If we were on a line rather than a circle, we
would actually conclude from (7.7) that the stabilizer is always three-dimensional;
but the requirement of periodicity restricts the space of allowed solutions X for a
given p, as we shall see momentarily.

Constant Coadjoint Vectors

It is worth exploring the solutions of (7.7) in the simple case where p(ϕ) = p0 is a
constant. The equation then reduces to

X ′′′ − 24p0

c
X ′ = 0 ,

whose general solution is a sum of exponentials

X (ϕ) = A + B e
√

24p0
c ϕ + C e−

√
24p0

c ϕ (7.8)

where A is real while B and C are generally complex coefficients, being understood
that

√
24p0/c is purely imaginary when p0 < 0. For generic values of p0, the only

2π-periodic solution of this type is a constant X (ϕ) = const. In that case the stabilizer
is one-dimensional, and consists of rigid rotations of the circle. But there also exist
exceptional values of p0 whose stabilizer is larger, namely

p0 = −n2c

24
(7.9)

where n ∈ N
∗ is a positive integer. At such values the exponentials in (7.8) are

e±inϕ and the corresponding vector field X is automatically 2π-periodic (and real
upon setting C = B∗). Thus, for exceptional constants (7.9), the stabilizer is three-
dimensional. Its Lie algebra is isomorphic to sl(2, R); we will see below that the sta-
bilizer itself is an n-fold cover of PSL(2, R). In particular, orbits of generic constants
p0 are radically different from orbits of exceptional constants (7.9). The situation is
depicted in Fig. 7.1.

If one thinks of Diff(S1) as a group of conformal transformations and identifies
p(ϕ) with the stress tensor of a CFT, one can recognize in (7.9) with n = 1 the
vacuum value of a stress tensor on the cylinder:

pvac = − c

24
. (7.10)

We shall see below that this interpretation is indeed correct, as the coadjoint orbit of
pvac turns out to be the lowest-lying orbit with energy bounded from below and has
its energy minimum at pvac. By contrast, the points (7.9) with n ≥ 2 belong to orbits
with energy unbounded from below.
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Fig. 7.1 The map of
Virasoro coadjoint orbits
with constant
representatives. The open
dots labelled by
n = 1, 2, 3, . . . indicate the
location of the exceptional
points −c/24, −4c/24,
−9c/24, etc

7.1.3 Hill’s Equation and Monodromy

At this point we have seen the most basic features of Virasoro orbits at c �= 0; we
now describe the first step of the complete classification by explaining the relation
between orbits and monodromy matrices for solutions of Hill’s equations. To lighten
the notation, from now on we write Âd∗

f p ≡ f · p.
Until the next section it will be convenient to think of the coordinateϕ as spanning

the real line R, without identification ϕ ∼ ϕ + 2π (this will be justified below).
Accordingly we now reinstate the notation D̃iff+(S1) for the universal cover of the
group of orientation-preserving diffeomorphisms of the circle and we think of it
as a subgroup of Diff+(R). Functions on the circle then are 2π-periodic functions
on R. We also sometimes use the words “conformally invariant” or “conformally
equivalent” to refer to objects that are D̃iff+(S1)-invariant or D̃iff+(S1)-equivalent,
respectively.

Virasoro Symmetry of Hill’s Equation

The key idea of the classification is the following: given a coadjoint vector (p, c),
we can associate with it a differential operator

�(p,c) ≡ − c

6

∂2

∂ϕ2
+ p(ϕ) (7.11)



7.1 Coadjoint Orbits of the Virasoro Group 207

where ϕ is a coordinate on the real line, p(ϕ) is 2π-periodic, and the operator �(p,c)

acts on suitable densities on the real line. The normalization in front of ∂2
ϕ is chosen

so as to ensure that the operator has good transformation properties under D̃iff+(S1),
as we shall see below. Note that the crucial term ∂2

ϕ disappears if c = 0, which is
why the considerations that follow apply exclusively to orbits with non-zero central
charge.

Definition Let (p, c) be a Virasoro coadjoint vector with c �= 0. The associated
Hill’s equation is the second-order, linear differential equation

− c

6
ψ′′(ϕ) + p(ϕ)ψ(ϕ) = 0 (7.12)

for the real-valued function ψ(ϕ) on the real line. With the notation (7.11) this is just
the statement �(p,c) · ψ = 0.

Hill’s equation may be seen as a non-relativistic Schrödinger equation on the real
line for a “wavefunction”ψ(ϕ)with a periodic “potential energy” p(ϕ), up to the fact
that ψ is real and need not be square-integrable.1 Thus we can associate an equation
(7.12) with each coadjoint vector (p, c), and vice-versa.

The transformation law of (p, c) under D̃iff+(S1) determines that of Hill’s oper-
ator (7.11). Using (6.112) and the centreless transformation law (6.36), we find

�( f ·p,c)(ϕ) = − c

6
∂2

ϕ + p( f −1(ϕ))
(
( f −1)′(ϕ)

)2 − c

12
S[ f −1](ϕ) , (7.13)

which is indeed very different from the original operator (7.11). The key point, how-
ever, is that the associated Hill’s equation (7.12) can be made conformally invariant
by choosing a suitable transformation law for ψ(ϕ):

Lemma If ψ(ϕ) is a density with weight −1/2 on the real line, then Hill’s equation
(7.12) is invariant under D̃iff+(S1).

Proof To simplify formulas, let us act on Hill’s operator with a diffeomorphism
f −1 rather than f so that

(
f −1 · ψ)(ϕ) = ψ( f (ϕ))( f ′(ϕ))−1/2. Then f −1 maps the

left-hand side of Hill’s equation (7.12) on

− c

6
∂2

ϕ

[
ψ( f (ϕ))( f ′(ϕ))−1/2

]+ p( f (ϕ))ψ( f (ϕ))( f ′(ϕ))3/2

− c

12
S[ f ](ϕ) ( f ′(ϕ))−1/2ψ( f (ϕ))

(7.14)

where the term with a second derivative can be written as

∂2
ϕ

[
ψ( f (ϕ))( f ′(ϕ))−1/2

] = ψ′′( f (ϕ))( f ′(ϕ))3/2− 1

2
ψ( f (ϕ))( f ′(ϕ))−1/2S[ f ](ϕ) .

1Note that Hill’s operator (7.11) coincides with a Sturm-Liouville operator with periodic potential.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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Here the term involving the Schwarzian derivative cancels that of (7.14); the latter
expression can therefore be rewritten as

(
f ′(ϕ)

)3/2 [− c

6
ψ′′(ϕ) + p(ϕ)ψ(ϕ)

]
.

Provided ψ solves (7.12), this vanishes. �

As a consequence of this lemma, the map that associates Hill’s equations with
Virasoro coadjoint vectors (p, c) is D̃iff+(S1)-invariant. Thus, Hill’s equation is
an invariant associated with each coadjoint orbit of the Virasoro group, and clas-
sifying Virasoro orbits is equivalent to classifying all D̃iff+(S1)-inequivalent Hill’s
equations.

Monodromy

Hill’s equation (7.12) is a second-order linear differential equation, so its solutions
span a two-dimensional vector space. Let ψ1 and ψ2 be two linearly independent
solutions. We define their Wronskian as

W ≡ det

(
ψ1 ψ2

ψ′
1 ψ′

2

)
= ψ1ψ

′
2 − ψ2ψ

′
1 . (7.15)

TheWronskian is constant on the real line (W ′ = 0) by virtue of Hill’s equation. Fur-
thermore W does not vanish since ψ1 and ψ2 are linearly independent. (Conversely,
if theWronskian does not vanish, then the solutionsψ1,ψ2 are linearly independent.)
Thus we can always choose

W [ψ1,ψ2] = −1 . (7.16)

We will refer to this equality as the “Wronskian condition” and to the solutions that
satisfy it as being “normalized”. Note that the Wronskian (7.15) is invariant under
D̃iff+(S1) when the ψi ’s transform as densities of weight −1/2, regardless of them
solving Hill’s equation:

W [ f · ψ1, f · ψ2](ϕ) = W [ψ1,ψ2]( f −1(ϕ)) .

In particular, for solutions of Hill’s equation, the Wronskian is constant:

W [ f · ψ1, f · ψ2] = W [ψ1,ψ2] whenψ1,ψ2 solve (7.12). (7.17)

Hill’s equation is a differential equation on the real line ϕ ∈ R with a 2π-periodic
potential p(ϕ). Its solutions need not be periodic, but they do satisfy certain con-
straints due to the periodicity of p(ϕ):

Lemma Let p(ϕ) be 2π-periodic and let ψ1,ψ2 be linearly independent solutions
of Hill’s equation (7.12). Then there exists a monodromy matrix M ∈ SL(2, R) such
that, for any ϕ ∈ R,
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(
ψ1(ϕ + 2π)

ψ2(ϕ + 2π)

)
= M ·

(
ψ1(ϕ)

ψ2(ϕ)

)
. (7.18)

Proof Letψ1,ψ2 be two linearly independent solutions of (7.12), and define ψ̃i (ϕ) ≡
ψi (ϕ + 2π) for i = 1, 2. Then the Wronskian associated with ψ̃1,2 takes the same
value as that of ψ1,2; furthermore, the functions ψ̃i solve the same Hill’s equation
as the functions ψi since p(ϕ) is 2π-periodic. This implies that there exists a real
matrix M such that (7.18) holds for any ϕ ∈ R. Since the ψi ’s and the ψ̃i ’s have the
same Wronskian, M must have unit determinant. �

Thus we can associate a monodromy matrix with any Virasoro coadjoint vector
and any pair of (normalized) solutions of the corresponding Hill’s equation. From
now on we use the notation

� ≡
(

ψ1

ψ2

)
(7.19)

for the “solution vector” associatedwith the basis of solutionsψ1,ψ2. Relation (7.18)
then becomes�(ϕ+2π) = M ·�(ϕ). If we were to choose another normalized basis
of solutions, say (φ1,φ2) = �t , there would be a linear relation � = S · � between
solution vectors, for somematrix S ∈ SL(2, R). Accordingly the monodromymatrix
M� associated with � would be related to the monodromy M� of � by M� =
SM� S−1. Thus the monodromy matrix changes by conjugation in SL(2, R) under
changes of bases of normalized solutions. In particular, the conjugacy class of M,

[M] ≡ {
SMS−1

∣∣S ∈ SL(2, R)
}
,

is invariant under changes of bases. It depends only on the function p(ϕ), and not
on the choice of solutions �.

We have shown above that Hill’s equation is invariant under D̃iff+(S1) in the sense
that, ifψ solves the equationwith a potential p(ϕ), then f ·ψ solves the same equation
with a potential f · p. In addition we have seen in (7.17) that this transformation
preserves the Wronskian condition, so that normalized solutions remain normalized
under D̃iff+(S1). Accordingly, if � is a normalized solution vector for the potential
p, then f · � is a normalized solution vector for f · p. And now comes the key
argument: since both Hill’s equation and the action of D̃iff+(S1) on � are linear, the
monodromy matrix of f · � coincides with that of �. We therefore conclude:

Theorem Let c �= 0 and denote by [M](p,c) the conjugacy class of any monodromy
matrix M associated with the Hill’s equation (7.12) specified by p(ϕ) and c. Then
there is a well-defined map

{Virasoro orbits at central charge c} → {Conjugacy classes of SL(2, R)} (7.20)

that associates with a coadjoint orbit W(p,c) the equivalence class [M](p,c) of the
corresponding monodromy matrix. In particular, Virasoro coadjoint vectors with the
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same central charge but non-conjugate monodromy matrices do not belong to the
same orbit.

This result illustrates the power of Hill’s operators. It provides a rough classi-
fication of Virasoro orbits by allowing us to distinguish orbits with non-conjugate
monodromies and may be seen as an infinite-dimensional analogue of the classifi-
cation of coadjoint orbits of SL(2, R) according to the value of the “mass squared”.
In particular the trace Tr(M) is a conformally invariant quantity. However, the clas-
sification is not precise in that two orbits whose monodromy matrices are conjugate
may well be different: the map (7.20) need not be injective (and we shall see below
that it is not). Tomake further progress we need to investigate Hill’s equation in more
detail.

For future reference, note the following: thanks to the fact that the conjugacy class
of the monodromy matrix is independent of the choice of a solution vector � for
Hill’s equation associated with (p, c), one can write its trace as a Wilson loop

Tr(M) = Tr

(
P exp

[∫ 2π

0
dϕ

(
0 1

6p(ϕ)/c 0

)])
(7.21)

where P denotes path ordering. This quantity is conformally invariant, so one can
replace (p, c) by any coadjoint vector (q, c) belonging to its orbit without affecting
the value of (7.21). In particular, if (p, c) belongs to the orbit of a constant coadjoint
vector (p0, c) with positive p0, the trace reads

Tr(M) = 2 cosh

(
2π

√
6p0

c

)
. (7.22)

The same formula holds for negative p0, with cosh(i x) = cos(x). We will put it to
use in Sect. 10.1 when defining the mass of BMS3 particles.

Hill’s Equation and Stabilizers

The stabilizer of a coadjoint vector (p, c) consists of diffeomorphisms that satisfy
(7.6). Let us see how this information is related to Hill’s equation (7.12). First note
that, if ψ1 and ψ2 are linearly independent solutions of Hill’s equation, then the
combinations

ψ2
1, ψ1ψ2, ψ2

2 (7.23)

all solve the stabilizer equation (7.7). These products are generally not 2π-periodic
and therefore do not represent vector fields on the circle, but one can show that there
always exist either one or three 2π-periodic linear combinations of these products.
This confirms our earlier observation that the stabilizer of all orbits is either one- or
three-dimensional. Note that, being−1/2-densities on the circle, the products (7.23)
were bound to be densities of weight −1, i.e. vector fields.

Let us now see how the stabilizer G p of (p, c) is described in the Hill language. If
f ∈ G p and if � is a normalized solution vector of Hill’s equation associated with
(p, c), the action of G p on� is such that f ·� provides another normalized solution

http://dx.doi.org/10.1007/978-3-319-61878-4_10
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vector for the same equation. Accordingly there exists some (constant) SL(2, R)

matrix A f such that
f · � = A−1

f �. (7.24)

In addition we have seen that the action of Diff(S1) leaves the monodromy matrix
invariant, so the monodromy of f · � coincides with the monodromy M of �.
Combining this statement with (7.24) we conclude that A−1

f MA f = M, which is to
say that A f belongs to the stabilizer GM ofMwith respect to conjugation. In addition
the inversion A−1

f in (7.24) ensures that A f g = A f Ag , so we conclude:

Lemma Let (p, c) be a Virasoro coadjoint vector with c �= 0, � a normalized
solution vector of the associated Hill’s equation. Let G p be the stabilizer of p for the
coadjoint action (6.114) and let GM be the stabilizer ofM for conjugation. Then the
map

A : G p → GM : f �→ A( f ) ≡ A f (7.25)

defined by (7.24) is a homomorphism.
This map relates the stabilizer of p to that of the corresponding monodromy

matrix. In particular it allows us to classify the conformally inequivalent solutions
of Hill’s equation at fixed (p, c). Indeed, the set of normalized solution vectors of
Hill’s equation at p with fixed monodromyM is in one-to-one correspondence with
the elements of GM, so the set of orbits of the stabilizer G p in that set of solutions is
a quotient

GM/Im(A) (7.26)

where Im(A) is the image of (7.25). Two solution vectors are conformally equivalent
if and only if they belong to the same orbit under G p, i.e. if they define the same
point in (7.26).

Remark The fact that the products of half-densities (7.23) solving Hill’s equation
produce integer densities solving the stabilizer equation (7.7) is reminiscent of the
fact that the “square” of two Killing spinors is a Killing vector. This correspondence
is exactly realized in three-dimensional gravity: Eq. (7.7) turns out to coincide with
the Killing equation expressed in terms of a suitable component X of a vector field on
space-time, while Hill’s equation (7.12) corresponds to the Killing spinor equation
for a suitable spinor component (see e.g. Eq. (16) in [10]).

7.1.4 Winding Number

The conjugacy class of monodromy matrices provides a continuous parameter that
roughly classifiesVirasoro orbits.Wenowdescribe a second invariant quantitywhich,
combined with monodromies, will provide a precise classification of orbits. This
second invariant turns out to be the discrete winding number of a path in the circle.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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Let ψ1 and ψ2 be normalized solutions of Hill’s equation (7.12). They have non-
zero weight under D̃iff+(S1), but their ratio

η(ϕ) ≡ ψ1(ϕ)

ψ2(ϕ)
(7.27)

transforms under D̃iff+(S1) as a function (i.e. a zero-weight density). It blows up at
the zeros of ψ2, so it is more convenient to think of it as a curve

η : R → RP1 : ϕ �→ η(ϕ) (7.28)

whose expression is (7.27) in terms of the projective coordinate (6.84). The points
where η diverges are then mapped by η on the “point at infinity” in RP1. Since RP1

is diffeomorphic to the circle (6.83), we can also think of η as a path in S1 whose
expression in stereographic coordinates is (7.27).

Coadjoint Vectors from Projective Curves

As in (7.19) we denote the basis of solutions ψ1,2 by �. Then the quasi-periodicity
(7.18) of � implies a similar “projective” monodromy for η(ϕ),

η(ϕ + 2π) = a η(ϕ) + b

c η(ϕ) + d
(7.29)

where a, b, c, d are the entries of the monodromy matrix M. If we let � = A�

be another normalized basis of solutions with A ∈ SL(2, R), the curve η̃ = φ1/φ2

corresponding to� by (7.27) is related to η by a projective transformation of the form
(6.87). In particular Eq. (6.91) implies that the Schwarzian derivative of ηwith respect
to ϕ is left unchanged by such a transformation. Thus the Schwarzian derivative of
η is invariant under changes of (normalized) bases of solutions of Hill’s equation,
which is consistent with the following observation:

Lemma Let ψ1 and ψ2 be normalized solutions of Hill’s equation (7.12) and η ≡
ψ1/ψ2. Then the function p(ϕ) is specified by the solutions of its Hill’s equation:

S[η](ϕ) = −12

c
p(ϕ) . (7.30)

Proof By virtue of the Wronskian condition (7.16),

η′ = 1

(ψ2)2
. (7.31)

It then follows from the definition (6.76) that S[η](ϕ) = −2ψ′′
2 (ϕ)

ψ2(ϕ)
, which coincides

with the right-hand side of (7.30) upon using Hill’s equation (7.12). �

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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This lemma says that the correspondence between Virasoro coadjoint vectors and
solutions ofHill’s equation goes bothways:Hill’s equation specifies certain solutions,
which in turn uniquely determine the periodic potential p(ϕ) via (7.30). In particular
the coadjoint transformation law (6.114) of p can be rewritten in terms of the scalar
transformation law of (7.27) plugged into (7.30).

Winding Numbers

One can think of η(ϕ) as a path in the circle with a “time parameter” ϕ. Equation
(7.31) then says that η′(ϕ) > 0, so η(ϕ) always spins around the circle in the same
direction. We therefore introduce the following terminology:

Definition The winding number n ∈ N of η(ϕ) is the number of laps around the
circle performed by η in a “time interval” of length 2π.

Wewill illustrate the computation of thewinding number in the next section, when
describing explicit Virasoro orbit representatives. For now note that η(ϕ) transforms
under D̃iff+(S1) as a function, so its winding number is conformally invariant:

Proposition Let c �= 0 and let n(p,c) ∈ N be the winding number of the curve η
associated with the Hill’s equation (7.12) specified by p(ϕ) and c. Then there is a
well-defined map

{Virasoro orbits at central charge c} → N : W(p,c) �→ n(p,c) . (7.32)

In particular, Virasoro coadjoint vectors with the same central charge but different
winding numbers do not belong to the same orbit.

This supplements our previous observation (7.20) that the conjugacy classes of
monodromymatrices yield a rough classification of Virasoro coadjoint orbits. In fact,
these two invariants together provide the complete classification of Virasoro orbits.
Indeed one can show that the map that associates a pair ([M], n) with each Virasoro
coadjoint orbit is injective, provided [M] is the conjugacy class of the monodromy
matrix and n is the winding number. Note however that the map is not surjective, as
some pairs ([M], n) do not belong to its image. We now verify this by brute force by
describing orbit representatives.

7.2 Virasoro Orbit Representatives

Virasoro coadjoint orbits are classified by two parameters, one of them continuous
(the conjugacy class of the monodromy M), the other discrete (the winding number
n). In this section we display explicit orbit representatives for all admissible pairs
([M], n), after a brief review of conjugacy classes in SL(2, R). We end with a picture
of orbits that extends Fig. 7.1. As before, we assume that the central charge c is
positive.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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7.2.1 Prelude: Conjugacy Classes of SL(2, R)

In order to classify the conjugacy classes of SL(2, R), we note that the trace of an
SL(2, R)matrix is invariant under conjugation; matrices with different traces cannot
be conjugate. This motivates the following terminology:

An SL(2, R) matrixM is

⎧
⎪⎨

⎪⎩

elli ptic if |Tr(M)| < 2;
parabolic if |Tr(M)| = 2;
hyperbolic if |Tr(M)| > 2.

Each conjugacy class of SL(2, R) is contained in one of these three families, but each
family contains several conjugacy classes. The elliptic and hyperbolic families con-
tain infinitely many conjugacy classes since they depend on a continuous parameter
(the trace ofM). Note that the trace ofM determine the properties of its eigenvalues:

M is elliptic ↔ distinct complex eigenvalues;
M is parabolic ↔ degenerate real eigenvalue ± 1;

M is hyperbolic ↔ distinct real eigenvalues.

We now determine the conjugacy classes contained in each family. The computations
are very similar to those of Sect. 4.3 where we determined the orbits of momenta for
the Poincaré group in three dimensions.

Lemma (elliptic family) LetM be elliptic. Then it is conjugate to a unique rotation
matrix (

cos(2πω) sin(2πω)

− sin(2πω) cos(2πω)

)
(7.33)

where ω belongs to the set ]0, 1/2[ ∪ ]1/2, 1[ . The stabilizer of (7.33) is the U(1)
rotation subgroup (4.82) of SL(2, R).

Proof In the elliptic family, the eigenvalues of M are complex conjugates of one
another with non-zero imaginary part. Since det(M) = 1, they can be written as
e±2πiω where ω belongs to the open interval ]0, 1[ without loss of generality, but
differs from 1/2. Let v ∈ C

2 be an eigenvector of M such that M · v = e2πiωv. This
vector is complex and linearly independent of its complex conjugate v̄; the latter is
an eigenvector of M with eigenvalue e−2πiω . Then v + v̄ and i(v − v̄) are linearly
independent real vectors; we can choose the norm of v in such a way that the (real)
matrix S expressing M in the basis {v + v̄, i(v − v̄)} has unit determinant. Then
SMS−1 takes the form (7.33). The stabilizer consists of all matrices that commute
with (7.33) and is readily seen to consist of rotations. �

Lemma (parabolic family) LetM be parabolic. Then it is conjugate to exactly one
of the following six matrices:

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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±
(
1 0
0 1

)
, ±

(
1 1
0 1

)
, ±

(
1 −1
0 1

)
. (7.34)

The stabilizer of the first two matrices is the whole group SL(2, R), while the stabi-
lizer R × Z2 of the four remaining ones consists of triangular matrices (4.96).

Proof When M is parabolic, its eigenvalues are either both 1 or both −1. Let λ be
the eigenvalue of M and let v ∈ R

2 be a (real) eigenvector of M. Let v′ be another
vector such that {v, v′} is a basis of R

2, and choose the normalization of v and v′ in
such a way that the matrix S expressing M in this basis has unit determinant. Then

SMS−1 =
(

λ x
0 λ

)
(7.35)

where λ = ±1 and x is an arbitrary real number. For x = 0 we find the first two
matrices in the list (7.34), each of which is alone in its conjugacy class. For non-zero
x , note that (

y 0
0 1/y

)(
1 ±1
0 1

)(
1/y 0
0 y

)
=
(
1 ±y2

0 1

)
, (7.36)

so for λ = +1, M is conjugate to the second matrix in (7.34) if x > 0 and to the
third one if x < 0, in both cases with an overall plus sign. The situation is similar
when λ = −1, but with the minus sign. The proof ends with the observation that all
matrices in (7.34) belong to disjoint conjugacy classes. The stabilizer is obtained by
direct computation. �

Lemma (hyperbolic family) Let M be hyperbolic. Then it is conjugate to a unique
matrix of the form

±
(

e2πω 0
0 e−2πω

)
(7.37)

where ω is a strictly positive real number. Its stabilizer is the groupR×Z2 consisting
of matrices (4.95) of the same form as (7.37) but without restriction on ω ∈ R.

Proof Since M is hyperbolic, it has two distinct real eigenvalues λ and 1/λ, where
λ ∈ R

∗. Let v and v′ be two eigenvectors ofM for these eigenvalues;we can normalize
them so that the matrix S expressing M in the basis {v, v′} has unit determinant.
Then SMS−1 takes the form (7.37) with e2πω = λ or e2πω = 1/λ. The ordering of

eigenvalues can be changed thanks to the SL(2, R)matrix

(
0 1

−1 0

)
, so we are free to

pick ω > 0, and this specifies uniquely the conjugacy class of the matrixM. Finding
the stabilizer is straightforward. �

From now on we say that a Virasoro orbit is elliptic, parabolic or hyperbolic
if the associated monodromy matrix is of one of those three types, respectively.
In addition we will distinguish parabolic orbits associated with ±I from parabolic
orbits associated with the four other matrices in (7.34) by referring to the former as
“degenerate” and to the latter as “non-degenerate”.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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7.2.2 Elliptic Orbits

Here we initiate the classification of Virasoro coadjoint orbits, by studying those
whose monodromy is elliptic. Parabolic and hyperbolic orbits will be investigated in
Sects. 7.2.3 to 7.2.6.

Finding Orbit Representatives

Let c > 0 and suppose that q(ϕ)dϕ2 is a quadratic density such that the monodromy
of Hill’s equation (7.12) is elliptic. (We denote the quadratic density by q rather than
p, because the latter will eventually be the “representative” of the orbit of q.) Then
we can choose a solution vector � whose monodromy matrix takes the form (7.33)
for some angle 2πω which is not an integer multiple of π. The function

Xq(ϕ) ≡ ψ2
1(ϕ) + ψ2

2(ϕ) (7.38)

is strictly positive and 2π-periodic; it is a vector field on the circle, since it is a
quadratic combination of −1/2-densities such as (7.23). In fact, it belongs to the Lie
algebra of the stabilizer of q since it solves equation (7.7). In addition it is invariant
under the action of the stabilizer of M and is therefore a well-defined functional of
q(ϕ), which justifies the notation Xq . Conversely, Xq determines q(ϕ) since Hill’s
equation implies

q = c

6

ψ′′
1ψ1 + ψ′′

2ψ2

Xq

(7.38)= c

6

[
1

2

X ′′
q

Xq
− 1

4

(
X ′

q

Xq

)2

− 1

X2
q

]

. (7.39)

We would have obtained the same formula upon using Eq. (7.30) with η = ψ1/ψ2.
Our goal now is to build a diffeomorphism gq ∈ D̃iff+(S1) such that q is obtained
by acting with gq on a suitable orbit representative p. In the language of induced
representations, the maps gq will be “standard boosts” on the orbit of p.

Let us define the negative number

p0 ≡ − c

6

[∫ 2π

0

dϕ

Xq(ϕ)

]2
, (7.40)

where the notation “p0” will be justified below. This number is well-defined since
Xq(ϕ) never vanishes, and it is invariant under D̃iff+(S1) since Xq is a vector field.

We can then define a diffeomorphism f ∈ D̃iff+(S1) by

f (ϕ) ≡ 2π√
6|p0|/c

∫ ϕ

0

dφ

Xq(φ)
. (7.41)

This quantity is the inverse of the sought-for standard boost since Eq. (7.39) can be
written as



7.2 Virasoro Orbit Representatives 217

q(ϕ) = p0( f ′(ϕ))2 − c

12
S[ f ](ϕ) , (7.42)

which we recognize as the coadjoint action (6.113) of

gq ≡ f −1 (7.43)

on the constant coadjoint vector p(ϕ) = p0 < 0. In conclusion:

Proposition Let (q, c) with c > 0 be a Virasoro coadjoint vector with elliptic
monodromy. Then it belongs to the orbit of a constant coadjoint vector (p, c) with
p(ϕ) = p0, where the value of p0 is determined by q(ϕ) according to (7.40) with Xq

given by (7.38) in terms of normalized solutions of the Hill’s equation of (q, c). In
addition, the diffeomorphism gq defined as the inverse of (7.41) is a standard boost
for the orbit of p in the sense that

gq · p = q (7.44)

where the dot denotes the coadjoint action (6.114).

Monodromy and Winding Number

Let us now see how the parameter (7.40) is related to the monodromy matrix. At
p = p0, Hill’s equation (7.12) reads

− c

6
ψ′′ − |p0|ψ = 0 (7.45)

where we write p0 = −|p0| to emphasize that this is a harmonic oscillator equation
with frequency

ω = √
6|p0|/c . (7.46)

A basis of solutions satisfying the Wronskian condition (7.16) is provided by

ψ1(ϕ) = 1√
ω
sin(ωϕ), ψ2(ϕ) = 1√

ω
cos(ωϕ). (7.47)

The corresponding monodromy matrixM is readily seen to take the form (7.33) with
ω given by (7.46) in terms of p0/c. The fact that the monodromy matrix is elliptic
implies that ω is not an integer multiple of 1/2, which is equivalent to saying that

p0 �= −n2c

24
. (7.48)

In the language of Sect. 7.1.2, the constant orbit representative p0 must be generic
in order for its orbit to be elliptic. By contrast, the exceptional orbit representatives
(7.9) will turn out to have degenerate parabolic monodromy (see below).

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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Thus different values of p0 generally define disjoint orbits since their monodromy
matrices (7.33) are not conjugate. However, at this stage we cannot tell whether

p0 and −
(√|p0| +

√
c
6 N

)2
(7.49)

belong to different orbits when N ∈ N since their monodromy matrices coincide
(their angles differ by 2πN ). This issue is settled by the winding number (7.32): the
curve (7.27) associated with the solutions (7.47) is

η(ϕ) = tan(ωϕ) , (7.50)

which can be seen as a path on a circle written in terms of a stereographic coordinate
η = tan(θ/2), where the coordinate θ ∈ R is identified as θ ∼ θ + 2π. In terms of θ
the path (7.50) is a rotation around the circle at constant velocity, θ(ϕ) = 2ωϕ. The
number of laps performed by this path around the circle when ϕ goes from zero to
2π is the winding number2

n p = �2ω� (7.46)=
⌊√

24|p0|
c

⌋

(7.51)

where �·� denotes the integer part. Thus the winding number associated with p0 < 0
takes a definite value in each interval ] − (n+1)2c

24 ,− n2c
24 [ , and jumps by one unit

every time p0 takes one of the exceptional values (7.9). For instance n p = 0 when
p0 belongs to ] − c/24, 0[ , while n p = 1 when p0 ∈ ] − c/6,−c/24[ , and so on.

In conclusion, the orbits of two generic constants p0 and p̃0 are disjoint if and
only if these constants differ. We have thus recovered the lower part (p0 < 0) of
Fig. 7.1. As a bonus we can now assign a monodromy matrix determined by (7.46),
and a winding number (7.51), with each point on that part. In particular the integers n
written on the left of the p0 axis can be interpreted as winding numbers for constants
p0 located between −(n + 1)2c/24 and −n2c/24.

Stabilizers

To conclude the description of orbits of generic constants p0 < 0, it remains to find
their stabilizer. As anticipated in (7.8), one shows that the stabilizer of p0 is the group
U(1) of rigid rotations f (ϕ) = ϕ + θ (or more precisely its universal cover R when
dealing with D̃iff+(S1)). The coadjoint orbit of (p0, c) can thus be written as

W(p0,c)
∼= D̃iff+(S1)/R ∼= Diff+(S1)/S1, (7.52)

whichmay be seen as an infinite-dimensional generalization of the orbit SL(2, R)/S1

of SL(2, R). The latter coincides with the momentum orbit (4.97) of a massive

2We denote the winding number by n p instead of n(p0,c) to reduce clutter.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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Poincaré particle in three dimensions; in the same way, we shall see in Sect. 10.1 that
(7.52) is the supermomentum orbit of a massive BMS3 particle.

Remark The stabilizer U(1) coincides with the stabilizer of the monodromy matrix
(7.33), so the quotient (7.26) consists of a single point. This implies that all confor-
mally inequivalent normalized solutions of the Hill equation associated with (p0, c)
can be obtained by acting with rotations on the solution (7.47).

7.2.3 Degenerate Parabolic Orbits

Orbit Representatives

We now turn our attention to coadjoint vectors (q, c) whose monodromy matrix is
of the “degenerate” parabolic type (7.34), i.e. coincides with ±I. We proceed as in
the elliptic case. In particular the monodromy matrix still ensures that (7.38) is a
positive, 2π-periodic vector field belonging to the Lie algebra of the stabilizer of
q(ϕ). The negative number (7.40) is still well-defined and D̃iff+(S1)-invariant, and
formula (7.41) provides a diffeomorphism of S1 such that Eq. (7.42) holds. Then
(7.43) is a standard boost that maps the constant coadjoint vector p0 on q(ϕ); in
particular the proposition surrounding (7.44) still holds up to the replacement of the
word “elliptic” by “degenerate parabolic”.

As in the elliptic casewe can choose constant coadjoint vectors as orbit representa-
tives. The corresponding Hill’s equation then reads (7.45) and admits the normalized
solutions (7.47), but the monodromymatrix is±I. Such amonodromymatrixM only
occurs when p0 takes the exceptional form (7.9) for some strictly positive integer n,
in which case

p0 = −n2c

24
and M = (−1)n

I. (7.53)

By contrast, elliptic orbits never contain an exceptional constant; this is a sharp
difference between elliptic and degenerate parabolic orbits.

The monodromy matrix (7.53) implies that two exceptional constants specified
by integers n, n′ can belong to the same orbit only if n and n′ have the same parity;
but at this stage we cannot tell if two orbits with the same parity are disjoint. As in
the elliptic case we can address this question by studying the winding number of the
curve (7.27) associated with the solutions (7.47). One can verify that the winding
number coincides with the number n specified by p0 = −n2c/24, which implies that
any two orbits of exceptional constants specified by different values of n > 0 are
disjoint. In conclusion, we have now recovered the dots in the lower part of Fig. 7.1,
and the values of n displayed there coincide with winding numbers. In particular
the orbit at n = 1 will be called the vacuum orbit from now on; in the context of
Riemann surfaces, it is known as universal Teichmüller space [7, 11]. Note that the
orbit of p0 = 0 does not have degenerate parabolic monodromy, and so has not yet
been accounted for by our classification of Hill’s equations.

http://dx.doi.org/10.1007/978-3-319-61878-4_10
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Stabilizers

We now study the stabilizers of orbits of exceptional constants p0 = −n2c/24.
We saw below (7.8) that the stabilizer is three-dimensional for such values, and is
generated by the vector fields

∂

∂ϕ
, sin(nϕ)

∂

∂ϕ
, cos(nϕ)

∂

∂ϕ
. (7.54)

The Lie algebra of the stabilizer is therefore isomorphic to sl(2, R), but different
values of n define non-conjugate embeddings of sl(2, R) in Vect(S1). In fact one
can verify using (6.96) that the finite diffeomorphisms that span the stabilizer of
p0 = −n2c/24 (and that reduce to (7.54) close to the identity) are projective trans-
formations (6.95) spanning a group PSL(n)(2, R) (the n-fold cover of PSL(2, R)). In
conclusion:

Lemma The stabilizer of p0 = −n2c/24 for the coadjoint action of D̃iff+(S1) (resp.
Diff+(S1)) is the group P̃SL(n)(2, R) (resp. PSL(n)(2, R)) spanned by diffeomor-
phisms f (ϕ) given by (6.95), where P̃SL(n)(2, R) is the universal cover of the n-fold
cover of PSL(2, R) = SL(2, R)/Z2. The coadjoint orbit of (p0, c) can be written as

W(− n2c
24 ,c
) ∼= D̃iff+(S1)/̃PSL(n)(2, R) ∼= Diff+(S1)/PSL(n)(2, R) (7.55)

The Lie algebra of the stabilizer is generated by the vector fields (7.54).
In Sect. 9.3 we will interpret the orbit of p0 = −c/24 as the set of gravitational

perturbations around Minkowski space. In that context the little group PSL(2, R)

will be seen as the Lorentz group in three dimensions. The remaining exceptional
values p0 = −n2c/24 (with n ≥ 2) will be interpreted as conical excesses where
one turn around the origin of space spans an angle 2πn.

Remark An important difference between elliptic and degenerate parabolic orbits
is that, in the latter case, the stabilizer of the monodromy matrix (7.53) is the whole
group SL(2, R), which does not leave the combination (7.38) invariant. Nevertheless,
the integral (7.40) is still independent of the choice of the normalized solution vector
� because, in that specific case, any SL(2, R) transformation� �→ S� is equivalent
to the action of a diffeomorphism of the circle belonging to the stabilizer of p0;
since the integral (7.40) is invariant under diffeomorphisms, it follows that it is also
invariant under � �→ S� for any S ∈ SL(2, R).

7.2.4 Hyperbolic Orbits Without Winding

Consider aVirasoro coadjoint vector (q, c)whosemonodromymatrix is of the hyper-
bolic type (7.37) with some ω > 0. We shall see that hyperbolic orbits differ greatly

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_9
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depending on the winding number of the curve (7.27), so we focus here on the case
of zero winding; the non-zero case will be treated in Sect. 7.2.5.

Finding Orbit Representatives

Let ψ1 and ψ2 be normalized solutions of Hill’s equation associated with (q, c) and
let η = ψ1/ψ2. Since the winding number of η is zero, we can choose our solution
vector such that ψ2 has no zeros on the real line. Then η(ϕ) is smooth and, by virtue
of (7.37), we have

η(ϕ + 2π) = e4πωη(ϕ) (7.56)

so η(ϕ) is monotonically increasing on R (since ω > 0). As in the case of elliptic
orbits, our goal is to find a “standard boost” gq whose inverse g−1

q ≡ f will map
q(ϕ) on a suitably chosen orbit representative. To do so we define

f (ϕ) ≡ 1

2ω
log(η(ϕ))

(7.27)= 1

2ω
log

(
ψ1(ϕ)

ψ2(ϕ)

)
(7.57)

which belongs to D̃iff+(S1) by virtue of (7.56). Now if we set

p0 ≡ c ω2

6
, (7.58)

we can use (7.30) and the cocycle identity (6.77) to write

q(ϕ) = p0( f ′(ϕ))2 − c

12
S[ f ] . (7.59)

As in (7.42) we recognize the coadjoint action of gq = f −1 on the constant coadjoint
vector p(ϕ) = p0 > 0, and thus conclude:

Proposition Let (q, c) with c > 0 be a Virasoro coadjoint vector with hyperbolic
monodromy and zero winding number. Then it belongs to the orbit of a constant
coadjoint vector (p0, c), where p0 > 0 is determined by the monodromy matrix
according to (7.58). In addition the diffeomorphism gq defined as the inverse of
(7.57) is a standard boost for the orbit of p in the sense (7.44).

Note that the definition (7.58) coincides with Eq. (7.46) for p0 > 0. Roughly
speaking, “hyperbolic orbits are an analytic continuation of elliptic orbits to imag-
inary values of the monodromy parameter ω”. This is analogous to the fact that
tachyonic momentum orbits may be seen as massive orbits with imaginary mass.

Stabilizers

At p = p0, Hill’s equation (7.12) reads − c
6ψ

′′ + |p0|ψ = 0 where we stress that
the sign of the potential term is opposite to the one in (7.45). A basis of solutions
satisfying the Wronskian condition (7.16) is provided by

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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ψ±
1 (ϕ) = ± 1√

2ω
eωϕ, ψ±

2 (ϕ) = ± 1√
2ω

e−ωϕ (7.60)

where ω > 0 is given by (7.46). The corresponding monodromy matrix is (7.37).
We have seen in (7.8) that the stabilizer is one-dimensional for p0 > 0, and that

it consists of rotations of the circle. Thus the stabilizer of p0 is a group U(1) of rigid
rotations (or more precisely its universal cover R when dealing with D̃iff+(S1)). In
particular the orbit of (p0, c) for p0 > 0 and c > 0 is diffeomorphic to

W(p0,c)
∼= D̃iff+(S1)/R ∼= Diff+(S1)/S1. (7.61)

As in (7.52) this orbit may be seen as an infinite-dimensional generalization of
SL(2, R) orbits of the type SL(2, R)/S1. However, the orbit differs from those of
negative p0’s in that the two choices of signs in (7.60) are conformally inequivalent.
Indeed, the stabilizer GM of the matrix (7.37) under conjugation is isomorphic to
R × Z2 while the universal cover of the little group of p0 is just R. Accordingly
the quotient (7.26) contains two points, indicating that there are two inequivalent
normalized families of solutions to Hill’s equation at (p0, c); these two families are
labelled by the sign ± in (7.60).

In terms of Fig. 7.1, we have now completed our understanding of almost the
whole real line p0 ∈ R, since we now know that the orbits that pass through p0 > 0
are of hyperbolic type without winding. The only remaining mystery is the orbit of
p0 = 0, and of course all the orbits that do not contain constant representatives.

7.2.5 Hyperbolic Orbits with Winding

Building Orbit Representatives

We now consider a Virasoro coadjoint vector (q, c) with hyperbolic monodromy
(7.37) but strictly positive winding number n > 0. The classification of orbits of such
vectors is more involved than in the previously encountered cases, so we proceed in a
“backwards” fashion. Namely, suppose we are given a pair of smooth real functions
ψ1, ψ2 on R, chosen in such a way that they satisfy the Wronskian condition (7.16).
Then it is automatically true that the function p(ϕ) defined by

p ≡ c

6

ψ′′
1

ψ1
= c

6

ψ′′
2

ψ2
(7.62)

is smooth for any constant c > 0. If in addition there exists a monodromy matrix
M such that (7.18) holds, then p(ϕ) is 2π-periodic and ψ1,ψ2 are solutions of the
corresponding Hill’s equation. This procedure provides a way to build Virasoro
coadjoint vectors out of functions ψi ; in particular, in order to prove that there exist
Virasoro orbitswith hyperbolicmonodromyand non-zerowinding number, it suffices
to find two normalized functions ψi satisfying these criteria, and the identification
of the corresponding Virasoro coadjoint vectors will follow.
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Thus, let ω > 0 be a strictly positive real number and let n > 0 be a positive
integer. Let us define the positive function

Fn,ω(ϕ) ≡ cos2(nϕ/2) +
(
sin(nϕ/2) + 2ω

n
cos(nϕ/2)

)2

(7.63)

as well as

ψ1(ϕ) ≡ eωϕ

√
Fn,ω(ϕ)

√
2

n

(
sin(nϕ/2) + ω

n
cos(nϕ/2)

)
, (7.64)

ψ2(ϕ) ≡ e−ωϕ

√
Fn,ω(ϕ)

√
2

n
cos(nϕ/2). (7.65)

Since Fn,ω is strictly positive, the ψi ’s are smooth functions. They satisfy the
Wronskian condition (7.16) and their monodromy matrix is (7.37). Their ratio is

η(ϕ) = e2ωϕ tan(nϕ/2) + ω

n

and describes a path on the circle with varying velocity and winding number n. It
follows that the function p(ϕ) defined by (7.62) is a Virasoro coadjoint vector with
hyperbolic monodromy (7.37) and winding number n > 0. It is explicitly given by

p(ϕ) = c ω2

6
+ c

12

n2 + 4ω2

Fn,ω(ϕ)
− c

8

n2

F2
n,ω(ϕ)

(7.66)

in terms of the function (7.63). We have thus built explicit orbit representatives with
hyperbolic monodromy and non-zero winding number.

It is worth spending some time to interpret formula (7.66). Let us take ω small
and expand p around ω = 0. To first order in ω, we get

p(ϕ) = −n2c

24
+ ω

nc

3
sin(nϕ) + O(ω2) . (7.67)

The leading term in p is an exceptional constant−n2c/24, sowe can think of (7.66) as
a deformation of that constant. The term of order one in ω in (7.67) is proportional to
sin(nϕ), which is one of the elements of the Lie algebra of the stabilizer of−n2c/24.
This ensures that the deformation does not belong to the orbit of −n2c/24. Indeed,
all deformations that do belong to that orbit take the form

âd
∗
X

(
−n2c

24

)
(6.115)= − c

12

(
n2X ′ + X ′′′)

for some vector field X , where the term n2X ′ + X ′′′ annihilates the contribution of
the modes sin(nϕ) or cos(nϕ).
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In Sect. 10.1 we will interpret (7.66) as the supermomentum of a BMS3 tachyon
with imaginary mass proportional to ω2. Accordingly, from now on we refer to
hyperbolic Virasoro orbits with non-zero monodromy as tachyonic orbits. They are
our first example of orbits that do not admit any constant representative, so they
are not accounted for by Fig. 7.1. In order to include them in our “map of coadjoint
orbits”, we think of them as orbits of deformations (7.67) of exceptional constants.
With this viewpoint and the “tachyonic” terminology, it is natural to identify this kind
of deformation with the horizontal line in Fig. 4.3b that represents tachyonic orbits
of Poincaré. Accordingly we represent tachyonic Virasoro orbits by a horizontal line
to the right of the point labelled “n” in Fig. 7.1. With this convention our schematic
representation of Virasoro orbits becomes the one displayed in Fig. 7.2. It remains to
understand which orbit contains the point p0 = 0, and to find the remaining orbits
that have no constant representative. Before doing so, we address a few minor points
regarding tachyonic orbits:

• The construction that led from (7.63) to (7.66) did produce Virasoro coadjoint
vectors with the desired monodromy and winding number, but it is not clear at
this stage that any coadjoint vector satisfying these properties can be mapped on
(7.66). However, this turns out to be the case; in this sense, the orbit representatives
(7.66) exhaust all orbits with hyperbolic monodromy and non-zero winding. See
[9] for the proof.

• The Lie algebra of the stabilizer of (7.66) is spanned by the periodic linear com-
binations of the functions (7.23). As it turns out, the only periodic combination

Fig. 7.2 A partial map of
Virasoro orbits, including
orbits of constant coadjoint
vectors together with
tachyonic orbits. Compare to
Fig. 7.1

http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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in this case is the product ψ1ψ2. The latter has 2n simple zeros inside [0, 2π[ and
generates a non-compact group R. In addition the function (7.66) is periodic with
period 2π/n, so the stabilizer must contain a group Zn consisting of rotations
by integer multiples of 2π/n. In fact, one can show (see [9]) that the stabilizer
of p in Diff+(S1) is isomorphic to a product R × Zn , while its stabilizer in the
universal cover D̃iff+(S1) is R × T2π/n where T2π/n is the group of translations of
the real line by integer multiples of 2π/n. We conclude that the orbit of (7.66) is
diffeomorphic to

W(p,c)
∼= D̃iff+(S1)/(R × T2π/n) ∼= Diff+(S1)/(R × Zn). (7.68)

7.2.6 Non-degenerate Parabolic Orbits

Here we include the last missing pieces of our description of Virasoro orbits. When
the monodromy matrix is non-degenerate parabolic, it is conjugate to one of the four
last elements in the list (7.34). As in the hyperbolic case we discuss zero and non-zero
windings separately.

Zero Winding

At zero winding we proceed as in the elliptic and n = 0 hyperbolic cases, i.e. we
look for standard boosts. Let therefore (q, c) be a Virasoro coadjoint vector such that
a normalized solution vector � = (ψ1 ψ2)

t associated with the corresponding Hill’s
equation has non-degenerate parabolic monodromy and zero winding number. The
monodromy matrices in (7.34) imply that

ψ1(ϕ + 2π) = ±(ψ1(ϕ) + εψ2(ϕ)
)
, ψ2(ϕ + 2π) = ±ψ2(ϕ) (7.69)

where ε is a priori +1 or −1. The corresponding curve (7.27) satisfies

η(ϕ + 2π) = η(ϕ) + ε (7.70)

and (7.31) implies that εmust actually be equal to+1. The opposite sign corresponds
to changing the orientation in the space of solutions of Hill’s equation, so with our
choice of orientation for ψ1,ψ2, only the value ε = +1 gives rise to an admissible
monodromy matrix. Then the function

f (ϕ) ≡ 2π η(ϕ) (7.71)

is a 2πZ-equivariant diffeomorphism of the real line, and property (7.30) implies
that

q(ϕ) = − c

12
S[ f ](ϕ) .
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As in Eqs. (7.42) and (7.59), we recognize the coadjoint action of gq ≡ f −1:

PropositionLet (q, c)with c > 0 be aVirasoro coadjoint vectorwith non-degenerate
parabolic monodromy and vanishing winding number. Then it belongs to the orbit of
(0, c) and the inverse of the diffeomorphism (7.71) is a standard boost in the sense
of Eq. (7.44).

Thuswehavefinally found the orbit of p0 = 0 ! Itwas the only point of Fig. 7.1 that
was still eluding us.We nowknow that its orbit has parabolic type. The corresponding
stabilizer is the group U(1) of rigid rotations (as for all positive or generic constants
p0), and there are two conformally inequivalent solutions ofHill’s equation at p0 = 0,
namely ψ±

1 = ±ϕ, ψ±
2 (ϕ) = ±1. The orbit can be represented as a quotient space

W(0,c)
∼= D̃iff+(S1)/R ∼= Diff+(S1)/S1

and is diffeomorphic to the orbits (7.52)–(7.61) of generic or positive constants.

Non-zero Winding

At non-zero winding our strategy will be similar to that used in the hyperbolic case
with winding: we rely on the fact that formula (7.62) always defines a 2π-periodic
function p(ϕ) when ψ1 and ψ2 satisfy the Wronskian condition and admit a well-
defined monodromy, which allows us to build orbit representatives.

Thus, pick a number ε ∈ {±1} and let n ∈ N
∗ be a non-zero winding number. Let

us define the positive function

Hn,ε(ϕ) ≡ 1 + ε

2π
sin2(nϕ/2) (7.72)

as well as

ψ1(ϕ) ≡ 1
√

Hn,ε(ϕ)

(
εϕ

2π
sin(nϕ/2) − 2

n
cos(nϕ/2)

)
, (7.73)

ψ2(ϕ) ≡ 1
√

Hn,ε(ϕ)
sin(nϕ/2) . (7.74)

Since the function Hn,ε is strictly positive, the ψi ’s are smooth functions. They
satisfy the Wronskian condition (7.16) and their monodromy matrix is one of the
four matrices on the right in the list (7.34), with the off-diagonal entry coinciding
with ε and the overall ±1 = (−1)n . The curve (7.27) corresponding to this basis of
solutions is

η(ϕ) = εϕ

2π
− 2

n
cot(nϕ/2)

and has winding number n. This is all as in the hyperbolic case below Eq. (7.65). It
follows that the function p(ϕ) defined by (7.62) is a Virasoro coadjoint vector with
non-degenerate parabolic monodromy and winding number n > 0, explicitly given
by
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p(ϕ) = c

12

n2

Hn,ε(ϕ)
− c

8

n2(1 + ε/2π)

H 2
n,ε(ϕ)

. (7.75)

As in the hyperbolic case, one can think of (7.75) as a deformation of a suitable
constant. However, in contrast ot (7.66), expression (7.75) seemingly contains no
continuous parameter that one could tune to “small” values since ε is only allowed to
take the values±1. In order to solve this problem, recall from (7.36) that the matrices

(
1 ε
0 1

)
and

(
1 λε
0 1

)
(7.76)

are conjugate in SL(2, R) for any positive real number λ. Accordingly we could
just as well have chosen the representatives of non-degenerate parabolic conjugacy
classes to involve an arbitrary positive parameter ε; the limit ε → 0 then may be
taken since it does not affect the conjugacy class of the monodromy matrix. The
corresponding coadjoint vector is (7.75) and its expansion to first order in ε reads

p(ϕ) = −n2c

24

(
1 + ε

2π
(1 + 2 cosϕ)

)
+ O(ε2). (7.77)

As in (7.67), the leading term is an exceptional constant (7.9) and we can think
of (7.77) as a deformation thereof. The deformation is designed so that it does not
belong to the orbit of −n2c/24. When dealing with BMS3 supermomentum orbits
in Sect. 10.1, we will interpret (7.75) as the supermomentum of a massless BMS3
particle. Accordingly, from now on we refer to non-degenerate parabolic orbits with
non-zero winding as massless orbits. Note that the statement that the matrices (7.76)
are conjugate is tantamount to saying that massless orbits are scale-invariant.

To conclude our analysis we state (without proof) a few features of massless
orbits:

• One can show that the orbit representatives (7.75) are exhaustive in that any coad-
joint vector belonging to a massless orbit can be brought in that form by a suitable
diffeomorphism. See appendix C of [9].

• The Lie algebra of the stabilizer of (7.75) is generated by the vector field X = ψ2
2,

which has n double zeros. In fact, as in the hyperbolic case, the stabilizer is
isomorphic to R×Zn , but the generator of the R part of that group is not the same
as in the hyperbolic case. The orbit is diffeomorphic to a quotient of Diff+(S1) by
this stabilizer, or equivalently a quotient of D̃iff+(S1) by R × T2π/n where T2π/n

is the same discrete translation group as in (7.68).
• Up to D̃iff+(S1) transformations, the solution (7.73)-(7.74) is the unique solution
of Hill’s equation with non-degenerate parabolic monodromy

(−1)n

(
1 ε
0 1

)
(7.78)

and winding number n.

http://dx.doi.org/10.1007/978-3-319-61878-4_10
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7.2.7 Summary: A Map of Virasoro Orbits

The above analysis exhausts all coadjoint orbits of the Virasoro group. Since these
orbits will play a key role in the remainder of this thesis, we now briefly summarize
the salient features of the classification.

The schematic drawings of Figs. 7.1 and 7.2 represent Virasoro orbits. The only
orbits which are not accounted for by these pictures are massless ones; in order
to include them we use the same trick as in Fig. 4.3b, where massless orbits are
represented by two dots near the origin (one with positive energy, the other with
negative energy). We will use the same notation here, except that such a pair of
massless orbits occurs for all positive integers n ∈ N

∗. With this convention, Fig. 7.2
turns into the complete map of Virasoro coadjoint orbits displayed in Fig. 7.3.

Each point in that map represents an orbit representative; different points cor-
respond to different representatives and define disjoint orbits. All orbits are now

Fig. 7.3 The map of Virasoro coadjoint orbits at positive central charge. Note the similarity with
Fig. 4.3b. Roughly speaking, the map consists of an infinity of copies of Poincaré momentum orbits
glued together and labelled by the winding number n. Locally (near a node n), the two pictures look
identical. This is not surprising given that Poincaré momentum orbits in three dimensions coincide
with SL(2,R) coadjoint orbits, which in turn are classified similarly to the conjugacy classes of
SL(2,R) that were instrumental for Virasoro coadjoint orbits. This hints that there exists a relation
between Virasoro and Poincaré symmetry; we shall see in part III that this relation is embodied by
the BMS3 group

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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accounted for since the orbit representatives are exhaustive. The vertical line repre-
sents orbits that contain a constant orbit representative:

• For generic p0 < 0 the orbit has elliptic monodromy determined by Eq. (7.46).
Its winding number is given by (7.51), so the points of Fig. 7.3 located between n
and n + 1 have winding number n (while points such that −c/24 < p0 < 0 have
zero winding number).

• For exceptional values p0 = −n2c/24 with n ∈ N
∗, the orbit has degenerate

parabolicmonodromy determined by (7.53). Its winding number is n. In particular,
the orbit at n = 1 is the vacuum orbit.

• For p0 > 0, the orbit has hyperbolic monodromy with zero winding, and the
conjugacy class of the monodromy matrix is determined by (7.46).

• The orbit of p0 = 0 has non-degenerate parabolic monodromy with zero winding.

On the other hand, the points of Fig. 7.3 that donotbelong to the vertical axis represent
orbits that do not contain any constant representative:

• Each horizontal line starting at a point labelled by n represents a family of tachy-
onic orbits with winding number n. The orbit representatives are given by (7.66)
and involve a continuous parameter ω > 0 that determines the corresponding
monodromy matrix (7.37).

• Each pair of dots surrounding a tachyonic line at n represents the two massless
orbits with winding number n. The orbit representatives are given by (7.75) and
involve a discrete parameter ε = ±1 that determines the corresponding mon-
odromy matrix (7.78).

Focussing for definiteness on the multiply connected group Diff+(S1), the stabi-
lizers of Virasoro orbits are as in Table 7.1.

In the universal cover of the Virasoro group the first four entries of the right
column would be replaced by their universal covers, while the two last ones would
be replaced by R × T2π/n . This should be compared with (and is very similar to) the
list of Poincaré little groups in Table4.1. Note that, at n = 1, the Virasoro stabilizers
are quotients by Z2 of their Poincaré counterparts. This is because Table4.1 lists the
little groups given by the double cover (4.93) of the Poincaré group (Table 7.1).

Remark Figure7.3 may be misleading since it suggests that all Virasoro orbits of
constant coadjoint vectors are of a similar type, which is clearly not the case since

Table 7.1 Coadjoint orbits and their stabilizers for the Virasoro group

Orbit Stabilizer

Vacuum-like p0 = −n2c/24, n ≥ 1 PSL(n)(2,R)

Elliptic U(1)

Hyperbolic, zero winding U(1)

Non-degenerate parabolic, zero winding U(1)

Massless, winding n ≥ 1 R × Zn

Tachyonic, winding n ≥ 1 R × Zn

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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orbits of constants p0 > 0 are hyperbolic while those of (generic) constants p0 < 0
are elliptic. In this sense, the map of orbits would have been more accurate if we
had represented the orbits of p0 > 0 by a horizontal line to suggest that they have
the same type of monodromy as the tachyonic orbits; see e.g. Fig. 1 of [9]. Our
convention in Fig. 7.3 is motivated instead by the fact that the value of p0 essentially
measures energy (see below), so that higher points in Fig. 7.3 have higher energy.

7.3 Energy Positivity

In this section we investigate the boundedness properties of an energy functional
on Virasoro orbits. This question is motivated both by its use in two-dimensional
conformal field theory, and by its applications in three-dimensional gravity. We start
by defining the Virasoro energy functional, before showing that the Schwarzian
derivative satisfies an “average lemma”whichwill play a key role for this functional’s
boundedness. We then show that the only orbits with energy bounded from below
are either orbits of constants p0 ≥ −c/24, or the massless orbit at winding n = 1
and monodromy ε = −1. To reduce clutter we return to our earlier abusive notation
by writing as Diff(S1) the universal cover of the group of orientation-preserving
diffeomorphisms of the circle. Relevant references include [7, 9] as usual.

7.3.1 Energy Functional

The group Diff(S1) can be interpreted as (part of) the symmetry group of a two-
dimensional conformal field theory. In that context the quadratic density p(ϕ)dϕ2

is (a component of) the stress tensor of the theory, and its zero-mode

E[p] ≡ 1

2π

∫ 2π

0
dϕ p(ϕ) (7.79)

is the associated energy. We shall refer to this quantity as the Virasoro energy func-
tional evaluated at p. If the theory admits a configuration whose stress tensor is p(ϕ),
then consistencywith conformal symmetry requires that it also admits configurations
with stress tensor f · p, where f ∈ Diff(S1) and the dot denotes the coadjoint action
(6.114) for some definite value of the central charge. The energy functional varies
under conformal transformations, since

E[ f · p] = 1

2π

∫ 2π

0

dϕ

f ′(ϕ)

[
p(ϕ) + c

12
S[ f ](ϕ)

]
(7.80)

generally differs from (7.79).

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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Now consider a CFT with central charge c > 0 and let � be the space of its
stress tensors p(ϕ); in general � is a certain subset of the space F2(S1) of quadratic
densities. Since any quantum system with a well-defined vacuum is expected to have
energy bounded from below, the map

� → R : p �→ E[p] (7.81)

should be bounded from below. In addition, consistency with conformal symmetry
implies that� is a union of Virasoro coadjoint orbits. One is thus led to the following
question:

W hich of the V irasoro coad joint orbi ts o f Fig. 7.3 have
energy bounded f rom below under con f ormal trans f ormations?

(7.82)

In the sequel we will refer to orbits with energy bounded from below as orbits “with
positive energy”, although their energy (7.79) may actually be negative for some
field configurations p(ϕ).

Note that all orbits have energy unbounded from above. Indeed the term involving
the Schwarzian derivative in (7.80) can be written as

c

24π

∫ 2π

0

dϕ

f ′(ϕ)
S[ f ](ϕ) = − c

24π

∫ 2π

0
dϕS[ f −1](ϕ) (7.83)

where we have renamed the integration variable from ϕ to f −1(ϕ), then used (6.16)
and the cocycle identity (6.77). Since the Schwarzian derivative can be written as

S[ f ](ϕ) =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

, (7.84)

we can also recast (7.83) in the form

c

48π

∫ 2π

0
dϕ

(
( f −1)′′

( f −1)′

)2

.

This can be made arbitrarily large for suitable choices of f , which proves that the
energy functional E is unbounded from above on any Virasoro orbit.

7.3.2 The Average Lemma

As a first step towards the answer of the question (7.82), we focus on the piece of
Eq. (7.80) that involves the Schwarzian derivative. The result that we shall describe

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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was first derived in [12] and was based on projective geometry (see also [13, 14]).
The elementary proof given here is borrowed from [9].

Average lemma Let f ∈ D̃iff+(S1) and let S[ f ](ϕ) be its Schwarzian derivative
(6.76) at ϕ. Then the average of the Schwarzian derivative satisfies the inequality

∫ 2π

0
dϕS[ f ](ϕ) ≤

∫ 2π

0
dϕ

1

2

(
1 − ( f ′(ϕ))2

)
, (7.85)

with equality if and only if f (ϕ) is a projective transformation of the form (6.88).

Proof We consider the functional

I [ f ] ≡ −
∫ 2π

0
dϕ

[
1

2
( f ′(ϕ))2 + S[ f ](ϕ)

]
. (7.86)

Our goal is to show that this quantity is bounded from below and that its minimum
value is −π. By (7.84), it only depends on f ′ and f ′′. A convenient way to express
this dependence is to define

Y (ϕ) ≡ f ′( f −1(ϕ))
(6.16)= 1

( f −1)′(ϕ)
. (7.87)

Since f is a 2πZ-equivariant, orientation-preserving diffeomorphism,Y (ϕ) is strictly
positive and 2π-periodic. In terms of Y we can rewrite (7.86) as

I [Y ] = 1

2

∫ 2π

0
dϕ

[
(Y ′(ϕ))2

Y (ϕ)
− Y (ϕ)

]
(7.88)

where the integrand is well-defined since Y > 0. Let us denote the minimum and
maximum of Y (ϕ) by

m ≡ min
ϕ∈[0,2π] Y (ϕ) , M ≡ max

ϕ∈[0,2π] Y (ϕ) . (7.89)

With this notation the function

m + M − Y (ϕ) − m M

Y (ϕ)
= 1

Y (ϕ)

[(
M − m

2

)2

−
(

Y (ϕ) − M + m

2

)2
]

is non-negative and vanishes only at the points where Y reaches its minimum or its
maximum. Now consider the obvious inequality

(
|Y ′|√

Y
−
√

m + M − Y − m M

Y

)2

≥ 0. (7.90)

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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Integrating this over the circle and using (7.88), we obtain

I [Y ] ≥ −π(m + M − m M) +
∫ 2π

0
dϕ

|Y ′|
Y

√(M − m

2

)2 −
(

Y − M + m

2

)2
.

(7.91)

If there was no absolute value in the integrand on the right-hand side, we could just
change the integration variable from ϕ to Y using dϕ Y ′(ϕ) = dY ; the absolute
value prevents us from doing this globally, but we can do it locally between two
consecutive extrema of the function Y (ϕ) (since the sign of Y ′ is constant in such an
interval). We can then express the right-hand side of (7.91) in terms of the primitive
function of the integrand,

F(Y ) =
∫ Y

m

dz

z

√(
M − m

2

)2

−
(

z − M + m

2

)2

≡
∫ Y

m
dz G(z), (7.92)

where we have introduced the function G(z) to reduce clutter below. To see the use
of this, consider a function Y (ϕ) of the following shape (the general case follows
straightforwardly):

This function has two local minima at ϕ1 and ϕ3 and two local maxima at ϕ2 and
ϕ4 (the numbers of local minima and maxima coincide since Y (ϕ) is smooth and
2π-periodic). Then the integral in (7.91) can be written as (Fig. 7.4)

∫ 2π

0
dϕ

|Y ′|
Y

√(
M − m

2

)2

−
(

Y − M + m

2

)2

=

=
∫ Y2

Y1

dY G(Y ) −
∫ Y3

Y2

dY G(Y ) +
∫ Y4

Y3

dY G(Y ) −
∫ Y1

Y4

dY G(Y )

(7.92)= 2 [F(Y2) + F(Y4) − F(Y1) − F(Y3)]

Fig. 7.4 The function Y (ϕ)

is 2π-periodic and strictly
positive. Here we choose it
with four local extrema, the
global minimum being
Y (ϕ1) = m and the global
maximum Y (ϕ4) = M
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with the shorthand notation Y (ϕi ) ≡ Yi . The same computations would work for
arbitrarily many minima and maxima of Y (ϕ), with the same result: the integral is
twice the sum of F’s evaluated at the maxima minus twice the sum of F’s evaluated
at the minima. Thus the inequality (7.91) can be written as

I [Y ] (7.89)≥ −π(m + M − m M) + 2[F(M) − F(m)] + 2[F(Y2) − F(Y3)]
≥ −π(m + M − m M) + 2F(M) (7.93)

where we also used the fact that F(m) = 0 by virtue of the definition (7.92). Now it

turns out that F(M) = π
2

(√
M − √

m
)2
, which allows us to rewrite (7.93) as

I [Y ] ≥ −π(m + M − m M) + π
(√

M − √
m
)2 ≥ −π. (7.94)

We conclude that I [Y ] is bounded from below by the value −π, which is exactly the
inequality (7.85). It only remains to find the conditions under which (7.85) becomes
an equality. For this to be the case, the inequalities (7.90), (7.93) and (7.94) must all
be saturated; this occurs when Y (ϕ) satisfies the following three conditions:

• In order to saturate (7.90), it satisfies the differential equation

Y ′2 = (m + M)Y − Y 2 − m M. (7.95)

• In order to saturate (7.93), Y (ϕ) has only one minimum and one maximum, where
it takes the values m and M , respectively.

• In order to saturate the second inequality of (7.94), M = 1/m.

To solve (7.95) we use (7.87) and rewrite the equation in terms of f −1. Using M =
1/m the derivative of (7.95) becomes

Y ′ (1 − (( f −1)′)2 − 2S[ f −1]) = 0, (7.96)

which is equivalent to (6.94).We have shown below (7.54) that the only f ’s satisfying
this property are those that belong to the group of projective transformations (6.88),
which concludes the proof. �

7.3.3 Orbits with Constant Representatives

The average lemma allows us to investigate the boundedness properties of the energy
functional (7.79) on Virasoro orbits. For now we limit ourselves to orbits that admit
a constant representative.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6


7.3 Energy Positivity 235

Proposition The vacuum orbit, containing the point pvac = −c/24, has energy
bounded from below:

E[ f · pvac] ≥ E[pvac] = − c

24
. (7.97)

The minimum of energy is located at pvac.

Proof We consider formula (7.80) with p(ϕ) = pvac = −c/24. Renaming the
integration variable from ϕ to f −1(ϕ) and using Eqs. (6.16) and (6.77), we find

E[ f · pvac] = c

24π

∫ 2π

0
dϕ

[
−1

2

(
( f −1)′(ϕ)

)2 − S[ f −1](ϕ)

]

which we recognize as the functional (7.86) evaluated at f −1. The average lemma
(7.85) then implies that E[ f · pvac] ≥ −c/24, with equality if and only if f is a
projective transformation (6.88). Our earlier result (7.55) ensures that such transfor-
mations precisely span the stabilizer of pvac, so the minimum of energy is reached at
pvac. �

Let us turn to other orbits containing a constant representative p(ϕ) = p0. The
key will be to rewrite their energy functional as the vacuum energy functional, plus
another term. Starting from formula (7.80) we obtain

E[ f · p0] = p0 + c/24

2π

∫ 2π

0

dϕ

f ′(ϕ)
+ E[ f · pvac] (7.98)

where the integral of 1/ f ′ can be rewritten as

1

2π

∫ 2π

0

dϕ

f ′(ϕ)

(6.16)= 1 + 1

2π

∫ 2π

0
dϕ
[
( f −1)′(ϕ) − 1

]2

as follows from
∫ 2π
0 dϕ( f −1)′(ϕ) = 2π. Plugging this into (7.98) and using (7.97),

we obtain

E[ f · p0] ≥ p0 + p0 + c/24

2π

∫ 2π

0
dϕ
[
( f −1)′(ϕ) − 1

]2
.

The right-hand side here is the sumof p0 and an integralwhose integrand ismanifestly
non-negative. This implies the following result:

Proposition If p0 ≥ −c/24, then the orbit of (p0, c) has energy bounded frombelow,
with the energy minimum located at p0:

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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p0 ≥ − c

24
⇒ E[ f · p0] ≥ E[p0] = p0 .

Now what happens when p0 is lower than −c/24? In that case energy is
unbounded, as can be shown by finding a family of diffeomorphisms that lower
the energy indefinitely. Indeed, consider the matrix

(
cosh(γ/2) sinh(γ/2)
sinh(γ/2) cosh(γ/2)

)
∈ SL(2, R) (7.99)

where γ ∈ R (the normalization is chosen for later convenience). The corresponding
projective transformation (6.88) is

ei f (ϕ) = eiϕ cosh(γ/2) + sinh(γ/2)

−eiϕ sinh(γ/2) + cosh(γ/2)
, (7.100)

and one verifies that

1

f ′(ϕ)
= |eiϕ cosh(γ/2) + sinh(γ/2)|2 = cosh γ + sinh γ cosϕ . (7.101)

The Schwarzian derivative of f is given by (6.94), so we find that

E[ f · p0] (7.80)= p0 + c/24

2π

∫ 2π

0

dϕ

f ′(ϕ)
− c

24

where we have used the fact that the integral of f ′ over S1 is normalized to 2π. The
integral of (7.101) then yields

E[ f · p0] = (p0 + c/24) cosh γ − c

24
, (7.102)

and this can become arbitrarily negative when p0 < −c/24. In conclusion:

The coadjoint orbit W(p0,c)of a constant p0

has energy bounded from below if and only if p0 ≥ −c/24.
(7.103)

Thus, when p0 < −c/24, Fig. 7.5 is no longer valid because the energy functional
can reach arbitrarily low values in certain directions. The orbit then looks like an
infinite-dimensional saddle instead of the hyperboloid represented in Fig. 7.5.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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Fig. 7.5 Schematic representation of the Virasoro orbit of a constant p0 located above the vacuum
value−c/24, here understood to be the origin of the coordinate system. The coordinates qm , m ∈ Z

are the Fourier modes of coadjoint vectors q(ϕ); in particular the zero-mode q0 = E[q] is their
energy, which is bounded from below on the orbit. Compare to the massive Poincaré orbit with
positive energy in Fig. 4.3a

Note that the matrix (7.99) can be interpreted as the SL(2, R) group element
that represents a Lorentz boost with rapidity γ in three dimensions3 thanks to the
isomorphism (4.83), which also explains our choice of normalization. In that context,
formula (7.102) is the transformation law of the energy of a particle with mass
p0 + c/24 under Lorentz boosts. We will return to this interpretation in part III.

7.3.4 Orbits Without Constant Representatives

We now describe the boundedness properties of the energy functional on Virasoro
coadjoint orbits that do not admit a constant representative. As it turns out there is
only one orbit with energy bounded from below, while all other ones have unbounded
energy (Fig. 7.6).

Consider the non-degenerate parabolic orbit with winding number n = 1 and
monodromy ε = −1; a typical orbit representative is given by (7.75). One can then
prove the following result:

Proposition The energy functional on the massless orbit specified by n = 1 and
ε = −1 is bounded from below by −c/24. There exist infinitely many points on the
orbit whose energy is arbitrarily close to that value, but there is no orbit representative
that realizes this value of energy.

Wewill not prove this proposition here and refer instead to [9]. Roughly speaking,
the proof follows from a construction very similar to the one used in the proof of

3Rapidity is related to velocity v by γ = arctanh(v).

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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Fig. 7.6 Schematic representation of the Virasoro orbit with non-degenerate parabolic monodromy
ε = −1 and winding number n = 1. The origin of the coordinate system is the vacuum coadjoint
vector, qm = −(c/24)δm0, which does not belong to the orbit. Energy is bounded from below on
the orbit but its infimum is never quite reached, in contrast to Fig. 7.5. Compare to the massless
Poincaré orbit with positive energy in Fig. 4.3a

the average lemma (7.85), except that it crucially relies on the parameters n = 1,
ε = −1. The proof of the fact that the infimum of energy is never reached on the
orbit follows from the construction of a one-parameter family of points belonging to
the orbit in such a way that they converge to the constant −c/24 without ever quite
reaching it.

One might think that the other orbits without constant representatives behave in
a similar way, i.e. that they also have energy bounded from below. However, for any
such orbit, it is possible to build a one-parameter family of orbit elements whose
energy can be arbitrarily low, similarly to constant representatives p0 < −c/24. We
refer again to [9] for explicit constructions. Thus one concludes that

all tachyonic or massless V irasoro orbits have unbounded energy,

except the one wi th non − degenerate parabolic monodromy
ε = −1 and winding n = 1.

(7.104)

7.3.5 Summary: A New Map of Virasoro Orbits

The considerations of the last few pages allow us to include more information in
the map of Virasoro orbits of Fig. 7.3; see Fig. 7.7. Its two striking features are the
occurrence of a single orbit without constant representatives and positive energy, and
the fact that the lowest-lying orbit with positive energy is that of pvac = −c/24. This

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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Fig. 7.7 The map of
Virasoro coadjoint orbits at
positive central charge.
Orbits with energy bounded
from below are coloured in
red. Those are orbits of
constants p0 ≥ −c/24, plus
the unique massless orbit
with monodromy (7.78) such
that ε = −1 and winding
number n = 1. All other
orbits have energy
unbounded from below

observation justifies referring to the latter orbit as the “vacuum orbit” and to pvac as
the “vacuum stress tensor”. Note that the exact same situation occurs with relativistic
particles, as the only ones with energy bounded from below are either massive (with
non-negative mass) or massless.
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Chapter 8
Symmetries of Gravity in AdS3

In this chapter we explore a physical model where the Virasoro group plays a key
role, namely three-dimensional gravity on Anti-de Sitter (AdS) backgrounds and its
putative dual two-dimensional conformal field theory (CFT). These considerations
will be a basis and a guide for our study of asymptotically flat space-times in part III.

The plan is the following. Section8.1 is a prelude where we recall a few basic facts
about (three-dimensional) gravity, in particular regarding the notion of asymptotic
symmetries. Section8.2 is then devoted to three-dimensional space-times whose
metric approaches that of Anti-de Sitter space at spatial infinity; this includes Brown–
Henneaux boundary conditions and their asymptotic symmetries, which will turn out
to consist of two copies of the Virasoro group. In Sect. 8.3 we describe the phase
space of AdS3 gravity as a hyperplane at fixed central charges in the space of the
coadjoint representation of two Virasoro groups. Finally, in Sect. 8.4 we describe
unitary highest-weight representations of the Virasoro algebra and relate them to the
quantization of the AdS3 phase space.

Bibliographical remarks. This chapter is based on several combined references.
Perhaps the most important one is the original paper by Brown and Henneaux [1],
which triggered the development of the field as a whole. In that paper the authors
relied on the methods of [2–5] to build surface charges associated with asymp-
totic symmetries, but our approach will be led by their Lagrangian (or “covariant”)
reformulation [6–8]. In particular, our presentation of Brown–Henneaux boundary
conditions and of the associated asymptotic Killing vector fields follows [9]. The
general solution of the equations of motion first appeared in [10, 11]. It contains
in particular the BTZ black hole, which was discovered and studied in [12, 13].
Finally, the group-theoretic approach to the gravitational phase space first appeared
in [14–16], which is also where the AdS3 positive energy theorem was derived. (See
also [17–19] for earlier related considerations.)

© Springer International Publishing AG 2017
B. Oblak, BMS Particles in Three Dimensions, Springer Theses,
DOI 10.1007/978-3-319-61878-4_8
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8.1 Generalities on Three-Dimensional Gravity

Here we recall a few basic facts about classical general relativity in three dimen-
sions. We start by explaining that three-dimensional Einstein gravity has no local
degrees of freedom, then turn to a discussion of boundary conditions and the ensuing
boundary terms that one adds to the action in order to make the variational prin-
ciple well-defined. This finally leads to the concept of asymptotic symmetries and
the important observation that the Poisson brackets of surface charges that generate
these symmetries generally contain central extensions.

8.1.1 Einstein Gravity in Three Dimensions

We consider an orientable three-dimensional space-time manifoldM endowed with
coordinates xμ (μ = 0, 1, 2) on which we put a metric gμν with signature (− + +).
The equations of motion are determined by the Einstein–Hilbert action,

SEH[gμν,�] = 1

16πG

∫
M

d3x
√−g (R − 2�) . (8.1)

Here G is the Newton constant in three dimensions, R is the Ricci scalar associated
with gμν and � ∈ R is a cosmological constant. In three dimensions, and using units
such that c = � = 1, Newton’s constant G is a length scale. Equivalently 1/G is an
energy scale that coincides with the Planck mass.

Upon varying the action (8.1) and neglecting all boundary terms (which we shall
talk about later), one obtains the vacuum Einstein’s equations with a cosmological
constant:

Rμν − 1

2
Rgμν + �gμν = 0 , i.e. Rμν = 2�gμν . (8.2)

What is special about three-dimensionalmanifolds is that theirRicci curvaturewholly
determines their Riemann tensor independently of the equations of motion:

Rλμνρ = gλν Rμρ − gλρ Rμν − gμν Rλρ + gμρ Rλν − 1

2
R(gλνgμρ − gλρgμν) . (8.3)

Then the Einstein equations (8.2) imply that, at each point of space-time, the on-shell
Riemann tensor is that of amaximally symmetricmanifoldwith curvature determined
by the cosmological constant:

Rλμνρ = �(gλνgμρ − gλρgμν) . (8.4)
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In other words, any solution of Einstein’s equations in three dimensions is locally
isometric to three-dimensional de Sitter, Minkowski or Anti-de Sitter space depend-
ing on whether � is positive, vanishing or negative respectively. This is strikingly
different from higher-dimensional general relativity and relies on the relation (8.3)
expressing Riemann in terms of Ricci, valid only in two and three dimensions.1 In
technical terms it is the statement that

there are no local degrees of freedom in three-dimensional Einstein gravity.

It follows in particular that there are no gravitational waves, hence no gravitons.
Equivalently, all configurations of the metric are locally gauge-equivalent to empty
space. Importantly, this is not to say that the only solution of three-dimensional
gravity is empty space. For example, any quotient of Minkowski space by some
discrete group solvesEinstein’s equations, but is not globally isometric toMinkowski.
Thus global aspects are essential: even though all solutions of Einstein’s equations are
locally isometric, they are generally not globally isometric and therefore represent
physically distinct field configurations. In this sense the absence of local degrees
of freedom in three-dimensional gravity does not prevent the overall absence of
degrees of freedom: it only means that the actual, physical degrees of freedom of
the theory cannot be captured by a local analysis, but require instead a global one,
taking into account topological properties of the space-time manifold. Field theories
of this type, having no local degrees of freedom but still globally non-trivial, are
called topological field theories.

Note that the absence of local degrees of freedom is confirmed by the Hamiltonian
formalism [20]: picking a time direction in M, one can split the metric field into
a lapse N , a shift N i and a spatial metric gi j with conjugate momenta πi j , the
indices i, j ∈ {1, 2} labelling spatial directions. The lapse and shift play the role of
Lagrange multipliers enforcing the constraints that generate reparameterizations of
time and spatial diffeomorphisms, respectively. One thus obtains three dynamical
Lagrange variables gi j with three conjugate momenta πi j , subject to three first-
class constraints. These constraints can be solved by choosing three gauge-fixing
conditions (this is the statement that “first-class constraints count twice”), which
reduces the number of physical degrees of freedom of three-dimensional Einstein
gravity to 1

2 (3 × 2 − 3 − 3) = 0, as expected.

Remark Since three-dimensional Einstein gravity has no local degrees of freedom,
it is an unrealistic model of the world (where gravitational waves do exist [21]). This
motivates the construction of alternative theories of three-dimensional gravity that
do contain local degrees of freedom, such as topologically massive gravity [22] or
new massive gravity [23]. In this thesis we shall be concerned only with Einstein
gravity, although many of our considerations also apply to such modified theories.

1In two dimensions one has in addition Rμν = 1
2 Rgμν .
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8.1.2 Boundary Conditions and Boundary Terms

A field theory, as a Hamiltonian system, is defined by (i) its field content and Poisson
brackets, and (ii) boundary conditions on fields and momenta. The second point is
crucial for gauge theories such as gravity. Here we explain certain generalities on
boundary conditions, leaving specific definitions in three-dimensional gravity for
later. In general terms, given a set of fields living on a manifold M, one chooses
coordinates (r, x) onM and calls “infinity” the region where r goes to infinity while
all other coordinates are kept finite. One then specifies certain fall-off conditions for
fields and their derivatives on that region, typically of the form

�(r, x) = O(r#) as r → +∞

where � is some field and the coefficient # depends on the choice of fall-off condi-
tions. In writing this it is understood that ∂r� is of order O(r#−1) at infinity.2

The influence of fall-offs is visible at the level of the action principle. Indeed,
it is understood that the action of the theory should be plugged in an exponential
ei S , which is then to be integrated over field configurations in a path integral so
as to produce quantum-mechanical transition amplitudes. In the classical limit, the
leading contribution to the path integral should be due to on-shell field configurations;
but for this to be true the integrand must be differentiable, which is to say that the
functional derivative δS/δ�(x) is a local quantity. This, in turn, is only true provided
the variation of the action contains no boundary terms. For instance, the variation of
the Einstein–Hilbert action (8.1) is given by

δSEH = 1

16πG

∫
M

d3x
√−g

(
Rμν − 1

2
Rgμν + �gμν

)
δgμν

+ 1

16πG

∫
M

d3x ∂α

(√−ggμνδ�α
μν − √−ggμαδ�λ

λμ

)
.

(8.5)

The first term of this expression is the integral of the variation of the metric multiply-
ing the vacuum Einstein equations, as expected. The second term is the integral of a
total divergence and is therefore equal, by Stokes’ theorem, to the flux of a vector field
through the boundary ∂M of M. Depending on one’s choice of fall-off conditions
for the metric, this boundary term may or may not vanish. If it does vanish, then the
pure bulk action (8.1) can be legally plugged into a path integral. If it does not, then
(8.1) is not differentiable and cannot be inserted as such in a path integral, which is
to say that the semi-classical limit of a path integral involving only the action (8.1)
is not given by on-shell field configurations. Accordingly, in order for the theory to
have a well-defined semi-classical limit given by the equations of motion (8.2), one
is generally forced to modify the pure bulk action (8.1) as

2This is not a trivial requirement; for instance the function sin(r42)/r is of orderO(1/r) as r → +∞
but its derivative is not of order O(1/r2).
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S[gμν] = SEH[gμν] +
∫

∂M
d2x L(gμν, ∂gμν, . . .) . (8.6)

HereL is a certain Lagrangian density on the boundary ofM, chosen so as to cancel
the possibly non-vanishing boundary terms coming from the variation (8.5). Provided
one can find a suitable L, the variation of the improved action (8.6) only involves the
first term of (8.5) and the theory is classically consistent.

This explains, in terms of the action, how boundary conditions affect the definition
of the theory. A few remarks are in order:

• We have been sloppy in our discussion of the notion of “boundary”. Indeed we
claimed that the fields of our theory live on a manifold M and called ∂M its
boundary, which we identified with the region r → +∞ in terms of some radial
coordinate r . But typical space-time manifolds (such as R

3) actually have no
boundary in the strict sense, so we should have been more precise: when we say
that the region r → +∞ is the boundary ∂M of M, we really mean that we
complete M into a larger manifold, say M, which now has a boundary, and in
terms of the original coordinate r that boundary is located at r = +∞. This
completed manifold M is known as a conformal compactification of M [24].

• Aside from fall-off conditions, there is a second reason for adding boundary terms
to the Einstein–Hilbert action. Namely, the Ricci scalar contains second-order
derivatives of the metric, so in order to insert legally the gravity action in a path
integral when the metric satisfies Dirichlet boundary conditions, boundary terms
must be added to the Einstein–Hilbert action to cancel these second-order terms.
This is the origin of the Gibbons–Hawking–York boundary term [25, 26].

• The discussion of boundary terms clarifies in which sense a theory having no
local degrees of freedom can still have non-trivial topological degrees of freedom:
even though the bulk dynamics is trivial, that of the boundary is highly non-
trivial! In particular topological field theories, such as three-dimensional gravity,
are the simplest examples of holographic systems since all their physical degrees
of freedom live on the boundary of space-time. In higher space-time dimensions,
the discussion of boundary terms remains the same but it is complicated by the
presence of local, bulk degrees of freedom.

• Three-dimensional Einstein gravity can be reformulated as a Chern–Simons the-
ory whose gauge group is determined by the sign of the cosmological constant
[27, 28] (see also [29–31]). This allows one to rewrite the Einstein–Hilbert action
(plus boundary terms) as a purely two-dimensional action describing a field theory
on the boundary of space-time, as follows from the relation betweenChern–Simons
theory, Wess–Zumino–Witten models and Liouville theory. It is often referred to
as “dimensional reduction”, and was first worked out in [32] for Brown–Henneaux
boundary conditions, while flat boundary conditions were studied in [33].
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8.1.3 Asymptotic Symmetries

Having justified the necessity of boundary terms for field theories, we now turn to
gauge theories and explain qualitatively how one can find their global symmetries.
These symmetries turn out to depend in a crucial way on the choice of fall-off
conditions.Wewill first argue that the conserved charges associated with rigid global
symmetries are strikingly different from those of gauge theories, then describe the
ensuing notion of asymptotic symmetries. We conclude with the observation that
the canonical generators of these symmetries generally satisfy a centrally extended
Poisson algebra.

The Problem of Gauge Symmetries

Supposewe are given some gauge-invariant field theory living on amanifoldM, with
some bulk action S[�]. The system has gauge redundancies, i.e. gauge symmetries,
and one expects that there exist corresponding conserved quantities. The question is:
how to build such conserved charges? To answer this we follow [6].

A naive guess is to simply apply the Noether procedure. For a field theory which
is left invariant by certain symmetry transformations generated by some parameters
εa , a = 1, . . . , N , with field and space-time transformations of the general form

x �→ x + δεx, � �→ � + δε�,

the N Noether currents jμ
a can be obtained by “gauging” the symmetry, that is,

replacing the rigid parameters εa by arbitrary functions εa(x) on space-time. The
variation of the action then takes the form

δS = −
∫
M

d Dx jμ
a ∂με

a (8.7)

from which one can read off the definition of the currents jμ
a . Their conservation

follows from the fact that δS ≈ 0 on-shell, and the corresponding conserved Noether
charges are the fluxes of these currents through a space-like slice � of space-time:

Qa =
∫

�

(d D−1x)μ jμ
a , (8.8)

where (d D−1x)μ is proportional to εμα1...αD−1dxα1 . . . dxαD−1 . Equivalently,
(d D−1x)μ ∝ d D−1x · nμ where nμ is the future-pointing time-like unit vector field
orthogonal to �, and indices are moved thanks to the space-time metric (Fig. 8.1).

The problem with gauge symmetries now becomes apparent. Indeed, in that case
the symmetry parameters εa are already gauged, which is to say that the right-hand
side of (8.7) vanishes. This in turn implies that the Noether currents associated with
gauge transformations all vanish! In particular, there seems to be no way of defining
conserved charges of the form (8.8) for a gauge symmetry; this problem is the key
difference between gauge symmetries and rigid symmetries.
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Fig. 8.1 A space-time
manifold M with an
embedded space-like slice �

and future-pointing time-like
normal vector n

The solution is provided by the following observation: theNoether current defined
by (8.7) is not unique, as one can add to it the divergence of a two-form without
affecting the left-hand side. In other words Eq. (8.7) does not specify the Noether
current jμ

a uniquely, since the modified current j̃μ
a = jμ

a + ∂νkμν
a , where kμν

a =
−kνμ

a , satisfies the same property provided the antisymmetric tensor k falls off fast
enough at infinity. The corresponding Noether charge (8.8) is left unaffected by this
modification provided the integral of k on the boundary of� vanishes; if that integral
does not vanish, however, the charge receives an additional surface contribution of
the form

Qsurface =
∫

∂�

(d D−2x)μν kμν (8.9)

where (d D−2x)μν is proportional to εμνα1...αD−2dxα1 . . . dxαD−2 . As we have just
argued, the would-be Noether charges of a gauge theory can only receive surface
contributions such as (8.9) since the corresponding Noether current vanishes up to
the divergence of a two-form.

At first sight this means that the situation is even worse than expected, since the
Noether charges of gauge theories are apparently ill-defined: there is no a priori way
to associate a kμν with a given symmetry generator, so the surface integral (8.9) can
take any value. But in fact, this also suggests a solution to the problem: instead of
trying to build a conserved current jμ, one can associate, with a gauge symmetry, a
(D−2)-form kμν and define the corresponding charge by (8.9). If kμν is conserved on-
shell in the sense that ∇μkμν ≈ 0, then the corresponding charge (8.9) is conserved
by time evolution. In that context, the field kμν is called a superpotential and its
integral (8.9) over the boundary of� is known as the associated surface charge.3 For
example, in electrodynamics, the superpotential coincides with the strength tensor
Fμν and the corresponding surface charge is the flux of the electric field at infinity,
that is, the total electric charge. Its conservation follows from the fact that ∂μFμν

vanishes on-shell by virtue of Maxwell’s equations.

3The term “superpotential” here has nothing to do with supersymmetry.
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Thus the computation of conserved charges for gauge symmetries boils down to
the problem of associating a conserved superpotential with a given gauge transfor-
mation, and understanding to what extent that superpotential is unique.

Asymptotic Symmetries

While the definition (8.7) of the Noether current associated with a global symmetry
transformation is straightforward, that of the superpotential associated with a gauge
transformation ismuchmore involved; see e.g. [6, 8, 34]. Here we simply summarize
the main ideas so as to apply them later to the specific case of three-dimensional
gravity. The construction consists of several steps:

1. Define the theory by choosing a bulk action, imposing certain fall-off conditions
on the field content, and possibly adding a boundary term to the bulk action such
that the full action is differentiable.

2. Find, among all possible gauge transformations, those that preserve the fall-off
conditions. Such gauge transformations are said to be allowed, as opposed to the
gauge transformations that spoil the fall-off conditions and are therefore “forbid-
den”. Allowed gauge transformations should then be thought of as the symmetries
(global or gauge) of the theory.

3. Associate, with each allowed gauge transformation, a conserved superpotential
kμν ; the latter depends linearly on the gauge parameters, while its dependence on
the field content depends on the model under study. We will not write down that
dependence explicitly here and refer to [6, 34] for details.

4. For each superpotential kμν , define a surface charge Q by (8.9). If all surface
charges associated with allowed gauge transformations are finite, then the bound-
ary conditions are consistent. The allowed gauge transformations whose surface
charges vanish are said to be trivial, while those whose surface charges do not
vanish are non-trivial.

This construction provides a distinction between three families of gauge transfor-
mations— forbidden, allowed and trivial— and is illustrated in Fig. 8.2. It is not just
a matter of terminology; different classes of gauge transformations truly represent
physically distinct notions of symmetries:

• Trivial gauge transformations are genuine (allowed) gauge transformations, that
is, redundancies in the description of the theory.

• Non-trivial gauge transformations are global symmetries that map a field config-
uration on a physically different one. They fall off at infinity much slower than
trivial gauge transformations and change the state of the system when acting on
it. For example, in electrodynamics, non-trivial gauge transformations at spatial
infinity take the form δAμ(x) = ∂με(x) with ε(x) = const.4 This corresponds to
a global U(1) symmetry and the associated charge is the electric charge.

4In practice, for constant ε this gives δAμ = 0, but for fields with non-zero electric charge the
transformation given by constant ε’s is non-trivial.
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Fig. 8.2 Gauge transformations fall in three classes: forbidden transformations are those that do not
preserve the fall-off conditions of the theory; allowed transformations are those that do, although
they generally change the state of the system; trivial transformations are those that preserve the fall-
off conditions and leave the state of the systemunchanged. In this sense trivial gauge transformations
are actual gauge redundancies, and the global symmetry group of the system is the quotient of the
group of allowed transformations by its subgroup of trivial gauge transformations

• Forbidden gauge transformations are neither gauge transformations, nor even
global symmetries: they are literally excluded from the theory since they do not
leave its phase space invariant.

Note that infinitesimal gauge transformations are always endowed with a Lie bra-
cket. Accordingly, they span a Lie algebra. The notions introduced above then lead
to the following terminology:

Definition The asymptotic symmetry algebra of a theory is the quotient of the algebra
of allowed gauge transformations by its ideal consisting of trivial transformations.

In the context of gravity, gauge transformations are diffeomorphisms of the space-
time manifold, generated by certain vector fields. Allowed gauge transformations
are generated by so-called asymptotic Killing vector fields. Their Lie bracket is the
standard Lie bracket of vector fields and the asymptotic symmetry algebra coincides
with the global symmetry algebra of the putative dual theory. In Sect. 8.2 we will
illustrate these notions in the case of AdS3 gravity with Brown–Henneaux boundary
conditions, while Sect. 9.1 will be devoted to their asymptotically flat analogue.

Central Extensions in the Surface Charge Algebra

The surface charges associated with asymptotic symmetries are designed in such
a way that they implement asymptotic symmetry transformations on the fields of
the theory. Explicitly, if we call ξ some infinitesimal gauge parameter generating
an allowed non-trivial gauge transformation and if we denote the associated surface
charge by Q[ξ], then the Poisson bracket of this charge with any field � takes the
form

{Q[ξ],�} = −δξ� (8.10)

http://dx.doi.org/10.1007/978-3-319-61878-4_9
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where the right-hand side is (minus) the variation of � under the transformation
generated by ξ. This is a restatement of Eq. (5.34), where we noted that Poisson
brackets with momentum maps generate symmetry transformations.

Since Poisson brackets satisfy the Jacobi identity, Eq. (5.35) still holds: for any
two infinitesimal gauge transformations ξ, ζ and any field configuration �, we have

{ {Q[ξ], Q[ζ]} ,�
} = {

Q
[[ξ, ζ]],�}

. (8.11)

It is tempting to remove the Poisson brackets from both sides of this equality and
conclude that surface charges provide an exact representation of the asymptotic
symmetry algebra. However, this naive removal would overlook the crucial point
(5.36) that surface charges generally close according to a (classical) central extension
of the algebra of asymptotic symmetry generators:

{Q[ξ], Q[ζ]} = Q
[[ξ, ζ]] + c(ξ, ζ) . (8.12)

Herec(ξ, ζ) is a real-valued two-cocycle that acts trivially on anyfield and is therefore
invisible in Eq. (8.11). The point of the seminal paper [1] was to show that such
non-trivial central extensions do arise in asymptotic symmetries of gravitational
systems.

8.2 Brown–Henneaux Metrics in AdS3

In this section we analyse Brown–Henneaux boundary conditions for Einstein grav-
ity in AdS3. After recalling some elementary geometric aspects of three-dimensional
Anti-de Sitter space, we introduce Brown–Henneaux fall-offs and work out the cor-
responding asymptotic Killing vector fields. We also display the general solution of
Einstein’s equations satisfying these boundary conditions and use it to derive the alge-
bra of surface charges associated with asymptotic symmetries, resulting in a direct
sum of two Virasoro algebras with non-zero central charges. We end by describing
an important family of Brown–Henneaux metrics that includes BTZ black holes.

8.2.1 Geometry of AdS3

Anti-de Sitter Space in Three Dimensions

Consider the space R
4 = R

2,2 endowed with coordinates (x, y, u, v) and the metric

ds2 = dx2 + dy2 − du2 − dv2. (8.13)

http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_5
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Then three-dimensional Anti-de Sitter space (or simply AdS3) is the submanifold of
R

2,2 given by

AdS3 ≡ {
(x, y, u, v) ∈ R

2,2
∣∣u2 + v2 = �2 + x2 + y2

}
(8.14)

for some parameter �2 > 0, equipped with the induced metric ofR
2,2. The parameter

� is called the AdS radius. The manifold (8.14) is diffeomorphic to a product S1×R
2

where the circle is time-like; in particular it contains closed time-like curves. Its
isometry group is O(2, 2) and acts transitively according to xμ �→ �μ

ν xν , where
xμ denotes the coordinates (x, y, u, v) and � is a 4 × 4 matrix that preserves the
“Minkowski metric” (8.13). The stabilizer for this action is isomorphic to O(2, 1),
so there is a diffeomorphism (Fig. 8.3)

AdS3 ∼= O(2, 2)/O(2, 1) ∼= SO(2, 2)/SO(2, 1).

In practice, physical models of space-time are manifolds without closed time-like
curves. It is therefore customary to unwind AdS3 into its universal cover, ÃdS3,
which is diffeomorphic to R

3 as a manifold. (Of course the metric on ÃdS3 ∼= R
3 is

not flat!) To describe ÃdS3, we introduce new coordinates (r,ϕ, t) given on (8.14)
by

r =
√

x2 + y2 =
√

u2 + v2 − �2,

ϕ = arctan(y/x), (8.15)

t = � arctanh(v/u).

On AdS3 the coordinate t ∈ R is subject to the identification t ∼ t + 2π�, while on
the universal cover ÃdS3 it takes all real values, without identification; see Fig. 8.4.
In terms of these coordinates the AdS3 metric induced by (8.13) is

Fig. 8.3 Two-dimensional anti-de Sitter space-time embedded in R
3 as the submanifold u2 +

v2 = x2 + �2 in terms of coordinates u, v, x such that the mock-Minkowski metric of R
3 reads

−du2 −dv2 +dx2. Circles at constant x are closed time-like curves in AdS2. The spatial boundary
of AdS2 consists of two circles at |x | → +∞. For AdS3, the boundary is a time-like torus S1 × S1
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Fig. 8.4 The universal cover of three-dimensional anti-de Sitter space-time, diffeomorphic toR
3. It

is equivalent to the interior of a solid cylinder, which may be seen as the Penrose diagram of ÃdS3.
The time coordinate t is directed along the axis of the cylinder while r is a radial coordinate, and
ϕ is a 2π-periodic coordinate on the circle. The spatial boundary r → +∞ is a two-dimensional
time-like cylinder spanned by the coordinates (ϕ, t), or equivalently by the light cone coordinates
x±

ds2 = −(1 + r2/�2)dt2 + dr2

1 + r2/�2
+ r2dϕ2 . (8.16)

From now on we always refer to the universal cover R
3 of (8.14) simply as AdS3,

without tilde. With this notation the coordinates t ∈ R, r ∈ [0,+∞[ , ϕ ∈ R with
ϕ ∼ ϕ + 2π, are global coordinates on AdS3. In general-relativistic terms, AdS3
is the (universal cover of the) maximally symmetric solution of Einstein’s vacuum
equations in three dimensions with a negative cosmological constant � = −1/�2.
Note at the outset that gravitation on an AdS3 background is determined by two
independent length scales � and G. In particular the dimensionless coupling constant
of the theory is G/�, so that the semi-classical regime corresponds to �/G → +∞.

Killing Vectors

The Killing vectors that generate isometries of AdS3 can be found thanks to the
embedding (8.14), where “Lorentz” transformations are generated by the six inde-
pendent vector fields

ξ1 = u∂v − v∂u, ξ2 = x∂y − y∂x , ξ3 = u∂y + y∂u,

ξ4 = v∂x + x∂v, ξ5 = u∂x + x∂u, ξ6 = v∂y + y∂v.

The combinations of signs appearing here are due to the metric (+ + −−) in (8.13).
Upon defining

�0 ≡ 1
2 (ξ1 + ξ2), �̄0 ≡ 1

2 (ξ1 − ξ2),

�1 ≡ 1
2 (ξ3 + ξ4 − iξ5 + iξ6), �̄1 ≡ 1

2 (−ξ3 + ξ4 − iξ5 − iξ6), (8.17)

�−1 ≡ 1
2 (ξ3 + ξ4 + iξ5 − iξ6), �̄−1 ≡ 1

2 (−ξ3 + ξ4 + iξ5 + iξ6),
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one finds the following Lie brackets for m, n = −1, 0, 1:

i[�m, �n] = (m − n)�m+n , i[�̄m, �̄n] = (m − n)�̄m+n , i[�m, �̄n] = 0 .

(8.18)

This exhibits the isomorphism so(2, 2) ∼= sl(2, R) ⊕ sl(2, R),5 upon identifying the
Lie brackets (5.90). Note that the generator of time translations is ∂t = 1

�
(�0 + �̄0)

while the generator of rotations is ∂ϕ = �0 − �̄0.

Spatial Infinity

The region r → +∞ is a cylinder spanned by coordinates (ϕ, t) at space-like infinity.
It is the spatial boundary ∂M of AdS3. In that region the metric (8.16) is

ds2 ∼ �2

r2
dr2 − r2

(
dt2

�2
− dϕ2

)
= �2

r2
dr2 − r2dx+dx− (8.19)

where we have introduced the light-cone coordinates

x± ≡ t

�
± ϕ . (8.20)

For large r the Killing vector fields (8.17) are asymptotic to

�m ∼ eimx+
∂+ − 1

2
imeimx+

r∂r , �̄m ∼ eimx−
∂− − 1

2
imeimx−

r∂r

wherem = −1, 0, 1. They generate global conformal transformations of the cylinder
at infinity, including time translations �0 + �̄0 = �∂t and rotations �0 − �̄0 = ∂ϕ.
These expressions have the general form

ξ ∼ X (x+)∂+ − 1

2
∂+ X (x+)r∂r , ξ̄ ∼ X̄(x−)∂− − 1

2
∂− X̄(x−)r∂r (8.21)

where the functions X and X̄ are 2π-periodic. Brown–Henneaux boundary conditions
will be such that vector fields of the form (8.21) are asymptotic symmetry generators
for arbitrary functions X, X̄ .

8.2.2 Brown–Henneaux Boundary Conditions

We now wish to define a family of metrics on R
3 that are “asymptotically Anti-de

Sitter” in the sense that they take the form of a pure AdS3 metric (8.16) at infinity.

5Strictly speaking we have displayed this isomorphism here for the complexification of so(2, 2),
but it also holds for real Lie algebras.

http://dx.doi.org/10.1007/978-3-319-61878-4_5
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As a starting point we ask what is the minimum amount of metrics that we wish to
include. A natural choice is to take pure AdS3 together with conical deficits, which
are obtained by cutting out a wedge out of the middle of AdS3 and identifying its
two sides. Concretely, consider the manifold described by coordinates r ∈ [0,+∞[ ,
ϕ ∈ R, t ∈ R subject to the identifications

(r,ϕ, t) ∼ (
r,ϕ + 4πω, t − 2πA

)
(8.22)

for some A ∈ R andω > 0. (The normalization ofω is chosen for later convenience.)
For ω = 1/2 and A = 0 this reduces to the identifications that define pure AdS3.
For 0 < ω < 1/2 it is a conical deficit; for ω > 1/2 it is a conical excess. Since this
is a global (topological) identification, the resulting pseudo-Riemannian manifold
still solves Einstein’s vacuum equations everywhere, except at the origin. In fact, the
metric (8.16)with identifications (8.22) is the solutionofEinstein’s equations coupled
to the stress tensor of a point mass at the origin. Using the change of coordinates

t ′ ≡ t + A

2ω
ϕ , r ′ ≡ r , ϕ′ ≡ ϕ

2ω
, (8.23)

the space-time metric can be rewritten as

ds2 = −
(
1 + r ′2

�2

)
(dt ′ − Adϕ′)2 + dr ′2

1 + r ′2/�2
+ 4ω2r ′2dϕ′2 (8.24)

where now there are no identifications on t ′, while ϕ′ is 2π-periodic. The term
A dt ′dϕ′ suggests that A is proportional to angular momentum, as will indeed be
the case below. Note that the integral curves of ∂ϕ′ contain closed time-like curves
unless

|A| ≤ 2ω� and r ′2 ≥ A2�2

4ω2�2 − A2
. (8.25)

Thus, the space-time manifold has no pathologies only in the region where r ′ is large
enough (and in particular in the asymptotic region r ′ → +∞), and provided the
parameter A is not too large compared to ω�. Accordingly, from now on we refer to
the solutions (8.24) with 0 < ω < 1/2 and |A| = 2ω� as extreme conical deficits.

In order to find boundary conditions that genuinely describe AdS3 space-times,
one would like the asymptotic symmetry algebra to at least include so(2, 2). If in
addition the phase space is to contain conical deficits (8.24), one is led to act with
so(2, 2) transformations on such conical deficitmetrics so that, if ξ is anAdS3 Killing
vector and gμν is the metric of a conical deficit, the fall-off conditions are satisfied
by the infinitesimally transformed metric

gμν + Lξgμν . (8.26)
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Here Lξgμν generally does not vanish because ξ may not be a Killing vector for the
conical deficit. In terms of cylindrical coordinates (r,ϕ, t), one thus obtains metrics
that satisfy the fall-off conditions [1]

(gμν) =
⎛
⎝grr grϕ gr t

gϕr gϕϕ gϕt

gtr gtϕ gt t

⎞
⎠ ∼

⎛
⎝

�2

r2 + O(r−4) O(r−3) O(r−3)

O(r−3) r2 + O(1) O(1)
O(r−3) O(1) − r2

�2
+ O(1)

⎞
⎠ . (8.27)

In practice, we will impose an extra gauge-fixing condition that simplifies the com-
putation of asymptotic symmetries. Namely, it turns out that the mixed compo-
nents grϕ and gr t can always be set to zero (identically) by applying a trivial diffeo-
morphism — one whose surface charges all vanish. The subleading corrections to
grr = �2

r2 + O(r−4) can similarly be set to zero. We refer to this gauge choice as the
Fefferman–Graham gauge. It leads to the following definition [9]:

DefinitionLetM be a three-dimensionalmanifoldwith a pseudo-Riemannianmetric
ds2. Suppose there exist local coordinates (r, xa) onM (with a = 0, 1), defined for
r larger than some lower limit, such that the region r → +∞ is a time-like cylinder
at spatial infinity where the asymptotic behaviour of the metric is

ds2
r→+∞∼ �2

r2
dr2 + (

r2ηab + O(1)
)
dxadxb (8.28)

with ηabdxadxb the two-dimensional Minkowski metric on the cylinder. Then we
say that (M, ds2) is asymptotically Anti-de Sitter in the sense of Brown–Henneaux
(in the Fefferman–Graham gauge), with a cosmological constant � = −1/�2.

From now on, when dealing with AdS3 gravity, we always restrict our attention
to metrics satisfying the Brown–Henneaux boundary conditions (8.28). For practical
purposes we will mostly describe the time-like cylinder in terms of light-cone coor-
dinates x±, in which case the label a in (8.28) takes the values ± and the Minkowski
metric on the cylinder is ηabdxadxb = −dx+dx−. Note that asymptotically AdS3
space-times need not be (and generally are not) globally diffeomorphic to AdS3; in
particular there may be singularities in the bulk, as the definition (8.28) only requires
r to be larger than some lower limiting value. In the following pages we establish
the main properties of this family of metrics, including their asymptotic symmetry
algebra.

RemarkThe fact that one is allowed to choose the Fefferman–Grahamgaugewithout
losing any information is a general property of locally asymptotically Anti-de Sitter
space-times [35]. It is related to theFefferman–Grahamexpansion ofAdSmetrics and
the ambient construction of conformal structures [36], where conformal manifolds
are built as boundaries, or celestial spheres, of higher-dimensional bulk manifolds.
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8.2.3 Asymptotic Killing Vector Fields

The asymptotic Killing vector fields associated with Brown–Henneaux boundary
conditions are vector fields that generate diffeomorphisms which preserve the fall-
offs (8.28). If gμν is a Brown–Henneaux metric and if ξ is such a vector field, this is
to say that

Lξgrr = Lξgr± = 0, Lξgab = O(1) (a, b = ±) (8.29)

in terms of light-cone coordinates (8.20). Here the first condition follows from the
fact that the components grr = �2/r2 and gr± = 0 are fixed, while the components
gab are allowed to fluctuate by terms of order r0 at infinity.

Lemma Let gμν be a metric that is asymptotically AdS3 in the sense (8.28) and let
ξ be a vector field that satisfies the properties (8.29). Then

ξ = X (x+)∂+ + X̄(x−)∂− − 1

2

(
∂+ X (x+) + ∂− X̄(x−)

)
r∂r + (subleading) (8.30)

where X (x+) and X̄(x−) are two arbitrary (smooth) 2π-periodic functions while the
subleading terms take the form

− �2

2
∂a(∂+ X + ∂− X̄)

∫ +∞

r

dr ′

r ′ gab(r ′, x±)∂b =

= �2

2r2
[
∂−(∂+ X + ∂− X̄)∂+ + ∂+(∂+ X + ∂− X̄)∂−

] + O(r−4) .

(8.31)

These formulas associate an asymptoticKilling vector ξ with an asymptoticallyAdS3
metric gμν and a vector field X (x+)∂+ + X̄(x−)∂− on the cylinder; the dependence
of ξ on the latter is linear.

Proof Let gμν be an asymptotically AdS3 metric (8.28).We first note that the require-
ment Lξgrr = 0 imposes ∂rξ

r = ξr/r , whose solution is

ξr (r, x±) = rF(x±) (8.32)

for some function F on the cylinder. On the other hand the condition Lξgr± = 0
yields ∂rξ

c = −gca �2

r ∂aF , which is solved by

ξa = Xa(x±) + �2∂bF(x±)

∫ +∞

r

dr ′

r ′ gab(r ′, x±) (8.33)

where Xa∂a is an arbitrary vector field on the cylinder. Note that the integral over r ′
converges since gab(r, x±) = r2ηab +O(1) by virtue of (8.28), so that the inverse is
gab = ηab

r2 + O(r−4). Plugging this in the integral of (8.33) we find explicitly
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ξa = Xa(x±) + �2

2r2
ηab∂bF(x±) + O(r−4) . (8.34)

In light-cone coordinates (8.20), the two-dimensional Minkowski metric reads

(ηab) =
(

η++ η+−
η−+ η−−

)
=

(
0 −1/2

−1/2 0

)
and (ηab) =

(
0 −2

−2 0

)

so that (8.34) becomes

ξ± = X± − �2

r2
∂∓F + O(r−4) . (8.35)

Finally one finds Lξgab = r2 (2Fηab + LXηab) + O(1) where LX denotes the Lie
derivative on the cylinder with respect to the vector field Xa∂a . The requirement
that this expression be of order one yields the conformal Killing equation for X ,
LXηab = −2Fηab. Contracting this with ηab one findsF = − 1

2 (∂+ X++∂− X−) and
the remaining constraints set ∂− X+ = ∂+ X−, which implies X+ = X (x+) and X− =
X̄(x−). Formula (8.30) follows, while the subleading terms (8.31) are produced by
(8.33). �

Note that the asymptotic Killing vector (8.30) takes the anticipated form (8.21)
and thus provides the generalization wewere hoping to find.Wewill denote by ξ(X,X̄)

the asymptotic Killing vector field determined by the functions X (x+) and X̄(x−).
One can decompose these functions in Fourier modes and define the vector fields

�m ≡ ξ(eimx+
,0) , �̄m ≡ ξ(0,eimx−

) , (8.36)

whose Lie brackets take the form (8.18) up to subleading corrections, with indices
m, n ranging over all integer values. Thus, asymptotically, the finite-dimensional
isometry algebra so(2, 2) of AdS3 is enhanced to two commuting copies of the
infinite-dimensional Witt algebra (6.24). In fact we can already anticipate the result:

Theorem The asymptotic symmetry group of AdS3 gravity with Brown–Henneaux
boundary conditions is a direct product D̃iff+(S1) × D̃iff+(S1) whose elements are
diffeomorphisms

(x+, x−) �→ (
f (x+), f̄ (x−)

)
(8.37)

acting as conformal transformations on the cylinder at spatial infinity.
At this stage, we have not yet proven this claim since we do not know whether

all asymptotic Killing vector fields (8.30) have non-vanishing surface charges on
the phase space; this will be done in the following pages. Also note that we are
being slightly sloppy in (8.37), since the diffeomorphisms generated by (8.30) affect
the radial coordinate. Hence formula (8.37) only holds up to 1/r corrections; it is
accompanied by transformations of the radial coordinate thatwe donot botherwriting

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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down, but that do preserve the limit r → +∞ in that they map r on a positive O(1)
multiple of itself.

Remark In our description of asymptotic symmetries we mentioned that the algebra
of vector fields (8.36) is a direct sumof twoWitt algebras up to subleading corrections
whichwe did not take into account. This is because these corrections are unimportant:
starting from the standard Lie bracket of vector fields, one can define a “modified
bracket” that coincideswith the standardone at infinity but ensures that the asymptotic
symmetry algebra is satisfied everywhere in the bulk; see e.g. [6, 37].

8.2.4 On-Shell Brown–Henneaux Metrics

In order for the equations of motion to provide a true extremum of the action func-
tional, the latter must be differentiable in the space of fields subject to the chosen
boundary conditions. In the case of Brown–Henneaux fall-offs, one can show that
the improved action

S[gμν] ≡ SEH[gμν] − 1

8πG

∫
∂M

d2x
√−det(gab)

(
K + 1

�

)

is differentiable in the space of metrics satisfying Brown–Henneaux boundary con-
ditions, where SEH is the Einstein–Hilbert action (8.1) while K is the trace of the
extrinsic curvature at the boundary [25, 26] (see also [38–41]).

With this improved action it makes sense to solve Einstein’s equations in the space
of metrics (8.28). We will not review this computation here and refer to [9–11] for
details. The bottom line is that the general solution of the equations of motion with
Brown–Henneaux boundary conditions in the Fefferman–Graham gauge reads

ds2 = �2

r2
dr2 −

(
rdx+ − 4G�

r
p̄(x−)dx−

) (
rdx− − 4G�

r
p(x+)dx+

)
(8.38)

where p(x+) and p̄(x−) are arbitrary, 2π-periodic functions of their arguments. The
factors of 4G� are introduced for later convenience. We will study this space of
solutions in greater detail below. For now, we only note that it is endowed with a
well-defined action of asymptotic symmetry transformations. Indeed, we define the
variation of p and p̄ under the action of an asymptotic Killing vector (8.30) by

Lξ(X,X̄)
ds2 ≡ 4G� δX p(x+) (dx+)2 + 4G� δX̄ p̄(x−) (dx−)2 + (subleading),

and this variation preserves the structure of the solution (8.38). In particular, observe
that ξ(X,X̄) is an exact Killing vector if the variations δX p and δX̄ p̄ vanish. Using
(8.30) one finds
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δX p = X∂+ p + 2p∂+ X − c

12
∂3

+ X , δX̄ p̄ = X̄∂− p̄ + 2 p̄∂− X̄ − c̄

12
∂3

− X̄

(8.39)

where c = c̄ is the Brown–Henneaux central charge

c = c̄ = 3�

2G
. (8.40)

The transformations (8.39) are exactly those of the components of a CFT stress tensor
under conformal transformations; they coincide with the coadjoint representation
(6.115) of the Virasoro algebra when seeing p(x+) and p̄(x−) as Virasoro coadjoint
vectors. In that context the condition for ξ(X,X̄) to be an exact Killing vector is
equivalent to the statement that (X, X̄) belongs to the stabilizer of (p, p̄). We refrain
from interpreting these results any further for now; wewill return to them in Sect. 8.3.
Note that at this stage there is actually no reason to call (8.40) a central charge:
even though it does appear in (8.39) exactly as the inhomogeneous term of the
coadjoint representation (6.115), the specific value (8.40) is irrelevant since changing
the normalization of p or p̄ would change the value of c and c̄. The importance of
the parameter (8.40) will become apparent only from the algebra of surface charges.

8.2.5 Surface Charges and Virasoro Algebra

Surface Charges

Take an asymptotic Killing vector field (8.30) specified by the functions X (x+),

X̄(x−), and choose an on-shell metric (8.38) specified by p(x+), p̄(x−). We wish to
evaluate the surface charge associated with the symmetry transformation generated
by ξ(X,X̄) on the background specified by p, p̄. As explained around Eq. (8.9), this
charge depends linearly on the components of ξ(X,X̄). In addition we need to choose
a “background” solution for which all surface charges vanish, which we take to be
the degenerate conical deficit at p = p̄ = 0,

ḡ = �2

r2
dr2 − r2dx+dx−. (8.41)

With this normalization one can show that the conserved superpotentials correspond-
ing toBrown–Henneaux asymptotic symmetries are such that the surface charge (8.9)
associated with the vector field ξ(X,X̄) on the solution (p, p̄) is

Q(X,X̄)[p, p̄] = 1

2π

∫ 2π

0
dϕ

[
p(x+)X (x+) + p̄(x−)X̄(x−)

]
(8.42)

where ϕ = 1
2 (x+ − x−). (See e.g. [9] for an explicit computation.)

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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This charge can be interpreted in two ways: first, as the Noether charge associated
with a conformal transformation (X, X̄) in a two-dimensional CFT on the cylinder
with stress tensor (p, p̄); second, as the pairing (6.111) between the direct sum of two
Virasoro algebras and its dual. This is consistent with the fact that the transformation
law (8.39) coincides with the coadjoint representation of Virasoro. In particular, the
charge associated with time translations corresponds to the asymptotic Killing vector
∂t = (∂++∂−)/�; it is the ADMmass of the system, or equivalently the Hamiltonian

M[p, p̄] = 1

2π�

∫ 2π

0
dϕ

[
p(x+) + p̄(x−)

]
(8.43)

and it coincides (up to a factor 1/�) with the sum of two Virasoro energy functionals
(7.79). Similarly the charge associated with rotations, generated by the asymptotic
Killing vector ∂ϕ = ∂+ − ∂−, is the angular momentum

J = 1

2π

∫ 2π

0
dϕ

[
p(x+) − p̄(x−)

]
(8.44)

and coincides with the difference of two Virasoro energy functionals. With this
normalization, pure AdS3 (8.47) has mass M = − 1

8G ; all its other surface charges
vanish.

Surface Charge Algebra

We now compute the algebra satisfied by the surface charges (8.42) under Poisson
brackets. Recall that these brackets are such that they generate symmetry transfor-
mations according to (8.10). We can apply this property here: if we let (p, p̄) be an
on-shell metric (8.38), then the bracket of two charges Q(X,0)[p, p̄] and Q(Y,0)[p, p̄]
is

{
Q(X,0)[p, p̄], Q(Y,0)[p, p̄]} (8.39)= − 1

2π

∫ 2π
0 dϕ

(
X∂+ p + 2p∂+ X − c

12∂
3+ X

)
Y (x+)

= Q([X,Y ],0)[p, p̄] + c c(X, Y ) .

(8.45)

In the last line we have introduced the bracket [X, Y ] defined as the usual Lie
bracket of vector fields on the line, while c(X, Y ) is the Gelfand–Fuks cocycle (6.43)
expressed in the coordinate x+. This is a Virasoro algebra (6.108), with a classical
central extension! The same computation would hold in the barred (antichiral) sector,
while chiral and antichiral charges commute. Thus we conclude:

Theorem The algebra of surface charges associated with asymptotic symmetries of
AdS3 space-times in the sense of Brown–Henneaux is the direct sum of two Virasoro
algebras with central charges (8.40).

The Poisson bracket algebra (8.45) can also be rewritten in terms of more con-
ventional Virasoro generators. If we define the charges

Lm ≡ Q(eimx+
,0)[p, p̄] , L̄m ≡ Q(0,eimx−

)[p, p̄] , (8.46)

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_7
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their Poisson brackets close according to two copies of the Virasoro algebra (6.118),
up to the renaming p → L. The central charges take the definite value c = c̄ =
3�/2G. In particular, the normalization of the homogeneous term of the bracket fixes
the normalization of the Brown–Henneaux central charge, confirming the fact that it
is an unambiguous parameter specifying the phase space. In this language the mass
(8.43) and the angular momentum (8.44) are

M = 1

�
(L0 + L̄0) , J = L0 − L̄0 ,

as in a two-dimensional conformal field theory. In particular, pure AdS3 has L0 =
L̄0 = −c/24, as does a CFT vacuum on the cylinder. Note that the Brown–Henneaux
central charge is essentially the Planck mass measured in units of the inverse of the
AdS3 radius. Equivalently, it is the inverse of the coupling constant of the system, so
the semi-classical limit corresponds to c → +∞.

Remark Brown–Henneaux boundary conditions are the “standard” boundary con-
ditions for gravity on AdS3 but other fall-off conditions exist as well, both in pure
Einstein gravity and in modified theories of gravity. For instance, in the Einstein
case, free boundary conditions [42] extend those of Brown–Henneaux by allowing
the conformal factor of the metric on the boundary to fluctuate, resulting in an even
larger asymptotic symmetry algebra. Many other families of boundary conditions
exist, such as the chiral boundary conditions of [43] or the AdS3 boundary condi-
tions of topologically massive gravity [35, 44, 45] and newmassive gravity [46, 47],
but we will have very little to say about these alternative possibilities.

8.2.6 Zero-Mode Solutions

In order to interpret the metrics (8.38), let us study zero-mode solutions, where
p(x+) = p0 and p̄(x−) = p̄0 are constants. In that case the only non-zero surface
charges (8.42) are the Virasoro zero-modes L0 = p0 and L̄0 = p̄0.

At p0 = p̄0 = −c/24
(8.40)= −�/16G the space-time metric is that of pure AdS3,

ds2AdS = �2

r2
dr2 −

(
rdx+ + �2

4r
dx−

) (
rdx− + �2

4r
dx+

)
. (8.47)

To verify that this is indeed pure AdS3, note that the change of coordinates

r = �

2
earcsinh(r̄/�) (8.48)

brings this metric into the manifest AdS3 form (8.16) (up to the bar on the coordinate
r̄ ) by virtue of the identity

http://dx.doi.org/10.1007/978-3-319-61878-4_6


262 8 Symmetries of Gravity in AdS3

dr

r
= dr̄√

�2 + r̄2
.

The angular momentum vanishes while the ADM mass of the solution is

Mvac = 1

�
(L0 + L̄0) = − c

12�
= − 1

8G
. (8.49)

This is the energy of the vacuum state of a two-dimensional CFT on the cylinder.
Recall that Brown–Henneaux boundary conditions were designed so as to include

conical deficits. One can show that the zero-mode solution specified by

L0 = p0 = − �

16G

(
2ω − A

�

)2

, L̄0 = p̄0 = − �

16G

(
2ω + A

�

)2

(8.50)

is precisely a conical deficit (8.24) written in Fefferman-Graham coordinates pro-
vided |A|/� < 2ω < 1. In terms of Virasoro charges (8.46), conical deficits have
− c

24 < L0, L̄0 ≤ 0. The angular momentum is J = p0 − p̄0 = ωA/2G, while the
ADM mass is

M = p0 + p̄0

�
= − 1

8G

(
4ω2 + A2

�2

)
.

Extreme conical deficits are solutions of this type for which either p0 or p̄0 vanishes,
or equivalently for which |A| = 2ω�. Conical excesses are solutions for which p0, p̄0

are of the form (8.50) with |A| ≤ 2ω but ω > 1/2, and the line separating deficits
from excesses is a section of parabola

�M = − �

8G
− 2G

�
J 2, |J | ≤ �/4G (8.51)

whose endpoints are tangent to the lines �M = |J |. The solution at p0 = p̄0 = 0
is the degenerate conical deficit (8.41) that we used to normalize charges. Note that
conical excesses with an angle of 2πn around the origin correspond to ω = n/2; for
fixed n, the set of such excesses is again a section of parabola in the (J, �M) plane
specified by

�M = − �

8G
n2 − 2G

�

J 2

n2
,

which generalizes (8.51). Note that, for vanishing angular momentum (A = 0),
Eq. (8.50) yields p0 = p̄0 = −c ω2/6 in terms of the Brown–Henneaux central
charge. This is precisely the relation (7.46) between constant elliptic Virasoro coad-
joint vectors and their monodromy matrix.

When p0 and p̄0 are positive constants, the metric (8.38) turns out to be that of a
BTZ black hole with mass M = (p0 + p̄0)/� and angular momentum J = p0 − p̄0

http://dx.doi.org/10.1007/978-3-319-61878-4_7
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written in Fefferman-Graham coordinates [10]:

ds2BTZ = �2

r2
dr2 −

(
rdx+ − 2G�

r
(�M − J )dx−

) (
rdx− − 2G�

r
(�M + J )dx+

)
.

(8.52)

In that context the requirement p0, p̄0 ≥ 0 is interpreted as a cosmic censorship
condition |J | ≤ �M , which is saturated by extremal black holes. Beyond that barrier,
all zero-mode metrics for which |J | > �|M | contain closed time-like curves at
arbitrarily large r .

The lightest BTZ black hole at M = J = 0 is the degenerate conical deficit (8.41).
This is strikingly different from four-dimensional black holes: in the latter case, the
lightest black hole is typically empty space, whereas in three dimensions the lightest
black hole is separated from AdS3 by a classical mass gap. The metrics that fill this
gap are conical deficits, i.e. metrics of point particles, so one can loosely say that
a particle turns into a black hole when its mass is higher than the threshold c/24�,
which is essentially the Planck mass. We will encounter a similar phenomenon in flat
space, though in that case black holes will be replaced by cosmological space-times.

Remark Since three-dimensional gravity has no local degrees of freedom, all solu-
tions of Einstein’s equations in three dimensions are locally isometric to AdS3 and
can therefore be realized as quotients of AdS3. In particular, the BTZ metric (8.52)
has no curvature singularity at r = 0, where, as everywhere else, it is locally isomet-
ric to AdS3. So how can it be a black hole? The answer to this question was clarified
in [13], where it was noted that the point r = 0 is a singularity in the causal sense
even though it is a regular point in the metric sense. Note that black holes obtained
as regular identifications of AdS also exist in higher dimensions [48, 49].

8.3 The Phase Space of AdS3 Gravity

From a Hamiltonian perspective, a phase space is a manifold consisting of “positions
and momenta” endowed with a Poisson structure, and time evolution is generated
by Poisson brackets with a Hamiltonian function H. This time evolution is in fact
the one-parameter group of diffeomorphisms generated by a Hamiltonian vector
field (5.12); it follows that phase space trajectories corresponding to different initial
conditions never cross, so one is free to think of phase space as the set of possible
initial conditions of the equations of motion. In other words, one can identify the
phase space of a system with the space of solutions of its equations of motion [50].
This reformulation is at the core of the covariant approach toHamiltonianmechanics,
which is sometimes stressed by referring to the phase space as being covariant. (In
contrast to the standard Hamiltonian approach, the covariant one treats space and
time coordinates on an equal footing.)

According to this viewpoint, the space of solutions (8.38) is really the phase space
of AdS3 gravity with Brown–Henneaux boundary conditions. The purpose of this

http://dx.doi.org/10.1007/978-3-319-61878-4_5
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section is to analyse some of its properties and to relate them with holography. Thus,
we interpret points of phase space as CFT stress tensors, describe and interpret their
transformation law under Brown–Henneaux transformations, and derive a positive
energy theorem for AdS3 gravity. Quantization is relegated to Sect. 8.4.

8.3.1 AdS3 Metrics as CFT2 Stress Tensors

According to (8.39), the functions p, p̄ that specify an on-shell metric transform
under asymptotic symmetry transformations as the components of the stress tensor
of a two-dimensional CFT with central charges (8.40). The corresponding surface
charges (8.42) generate two Virasoro algebras (8.45). Accordingly, from now on we
interpret Brown–Henneaux asymptotic symmetries as the global conformal symme-
tries of a two-dimensional CFT “dual” to AdS3 gravity. One can think of that theory
as living on the cylindrical boundary of AdS3. Its central charges are (8.40) and the
components of its stress tensor should be operators whose one-point functions are
the functions p(x+) and p̄(x−) appearing in the metric (8.38), which is in fact a gen-
eral feature of the AdS/CFT correspondence [40, 51, 52]. Thus the covariant phase
space of AdS3 gravity coincides with the space of CFT stress tensors on the cylinder
at fixed central charges. The finite transformation laws of these stress tensors under
conformal transformations are given by the coadjoint representation of the Virasoro
group, Eq. (6.114).

The Poisson structure on the phase space of AdS3 gravity is determined by the
requirement (8.10) ensuring that surface charges generate the correct transformation
laws when acting on the fields of the theory. For Brown–Henneaux boundary condi-
tions this leads to the Poisson brackets of charges (8.45), which coincides with the
Kirillov–Kostant Poisson bracket (6.118). Hence we conclude:

Theorem The covariant phase space of AdS3 gravity with Brown-Henneaux bound-
ary conditions is a hyperplane at fixed central charges (8.40) embedded in the space
of the coadjoint representation of the direct product of two Virasoro groups, and
endowed with the corresponding Kirillov–Kostant Poisson structure.

A loose way to interpret this theorem is to say that AdS3 gravity is group theory:
the whole phase space of the system is determined by the structure of the Virasoro
group, save for the fact that the value of the central charge is fixed by the coupling
constant. We will encounter a similar phenomenon in the next chapter when dealing
with asymptotically flat gravity. This being said, the occurrence of a Virasoro coad-
joint representation should not come as too big a surprise. Indeed, it is always true
that the charges associated with certain symmetries transform under the coadjoint
representation of the symmetry group (since these charges are nothing but momen-
tum maps). Accordingly, the surface charges of AdS3 gravity were bound to involve
the coadjoint representation of the Virasoro group. The only surprise is that Virasoro
coadjoint vectors exactly coincide with the functions specifying the metric, instead
of being some complicated non-linear combinations of the entries of the metric and

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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their derivatives. In particular, note that the set of on-shell Brown–Henneaux metrics
(8.38) is a vector space.

Remark It is not strictly true that the whole phase space of AdS3 gravity coincides
with the dual of two Virasoro algebras. Indeed, this conclusion is entirely based
on the asymptotic solutions (8.38), but completely overlooks the fact that some of
these solutions cannot be extended arbitrarily far into the bulk. This subtlety leads
to (finitely many) additional directions in the complete phase space of the theory,
as discussed in [53]. We will ignore this detail since it plays a minor role for our
purposes.

8.3.2 Boundary Gravitons and Virasoro Orbits

The covariant phase space (8.38) is spanned by pairs of functions
(

p(x+), p̄(x−)
)
.

The zero-mode solutions were described in Sect. 8.2.6, but a generic par (p, p̄) is
definitely not a zero-mode since p and p̄ may have some non-trivial profile on the
circle. If we pick one such solution at random, we can generate infinitely many
other ones by acting on it with asymptotic symmetry transformations. The resulting
manifold is the product of two Virasoro coadjoint orbits at central charges (8.40),

W(p,c) × W( p̄,c̄) . (8.53)

If we think of the asymptotic symmetry group as a generalization of the space-time
isometry group O(2, 2), and of (p, p̄) as an infinite-dimensional generalization of
space-timemomentum, then the orbit (8.53) is an infinite-dimensional generalization
of the standard orbits of momenta under, say, Lorentz transformations. In particular
the metrics spanning the orbit (8.53) should be seen as boosts of the metric (p, p̄).

This is a good point to introduce a terminology which has come to be more or
less standard [14, 54, 55]: a metric (p, p̄) obtained by acting on pure AdS3 with
a certain asymptotic symmetry transformation is known as a (classical) boundary
graviton. This nomenclature is then extended to any metric obtained from a zero-
mode solution by an asymptotic symmetry transformation. The name is justified
by the fact that three-dimensional gravity has no local (bulk) degrees of freedom,
but does have non-trivial topological (boundary) degrees of freedom visible in the
arbitrariness of the pair (p, p̄) that specifies a solution of the equations of motion.

If our goal is to classify all solutions (8.38), then orbits provides a natural orga-
nizing criterion: rather than classifying the solutions, we can classify their orbits
under asymptotic symmetries. Since we know the classification of Virasoro coad-
joint orbits, wemay claim to control the full covariant phase space of AdS3 gravity. In
particular, the classification of zero-mode solutions in Fig. 8.5 is a first step towards
the full classification: each point in the plane (J, �M) defines the orbit of the cor-
responding zero-mode solution, and different points define distinct orbits. However,
as we have seen in Sect. 7.2, not all orbits have constant representatives: there exist

http://dx.doi.org/10.1007/978-3-319-61878-4_7
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Fig. 8.5 The zero-mode solutions of AdS3 gravity with Brown–Henneaux boundary conditions.
The origin of the coordinate system (J, �M) is the degenerate conical deficit (8.41); the AdS3
metric is located below, on the �M axis, at the lower tip of the shaded square. BTZ black holes
are located in the wedge |J | ≤ �M . Conical deficits and excesses are located in the lower wedge
|J | ≤ −�M , respectively above and below the parabola (8.51). All metrics such that |J | > �|M |
contain closed time-like curves at arbitrarily large radius. Anticipating the results of Sect. 8.3.3, we
have shaded the solutions whose orbit has energy bounded from below under Brown–Henneaux
transformations; those are all BTZ black holes, the AdS3 metric, and all conical deficits such that
p0, p̄0 ≥ −c/24. Certain solutions with energy bounded from below are pathological in that they
contain closed time-like curves at infinity — those are the two diagonal strips surrounding the BTZ
wedge

infinitely many conformally inequivalent on-shell metrics that cannot be brought
into zero-mode solutions by asymptotic symmetry transformations. Thus the com-
plete classification of AdS3 metrics is essentially a product of two copies of Fig. 7.3,
where zero-mode solutions are those where both p and p̄ belong to the vertical axis
of the figure. This classification foliates the covariant phase space of AdS3 gravity
into disjoint orbits of the asymptotic symmetry group (Fig. 8.6).

Remark The relation between AdS3 gravity and orbits of the Virasoro group has
recently been the object of renewed interest, as it was realized that a similar structure
arises in many other contexts. To the author’s knowledge, the first explicit mention
of that relation appears in [17, 18, 56]; it is also hidden between the lines in [19, 57].
The relation was later studied in [14, 15] due to its implications for positive energy
theorems, while [58] (see also [59]) is devoted to the geometric properties of metrics
corresponding to non-constant pairs (p, p̄).

http://dx.doi.org/10.1007/978-3-319-61878-4_7
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Fig. 8.6 A schematic representation of the AdS3 phase space foliated into orbits of the asymptotic
symmetry group. Solutions belonging to the same symplectic leaf are related to one another by
asymptotic symmetry transformations, i.e. “boosts”, but there are no boosts that connect different
leaves

8.3.3 Positive Energy Theorems

As in Sect. 7.3 one may ask which solutions of AdS3 gravity belong to Virasoro
orbits on which the energy functional (8.43) is bounded from below. These solutions
can then be considered as “physical”, in contrast to the pathological solutions whose
energy can bemade arbitrarily lowby suitable asymptotic symmetry transformations.
Since the transformation law of the components (p, p̄) is the coadjoint representation
of the Virasoro group, the results of Sect. 7.3 are directly applicable to the problem
at hand. Thus the only solutions (p, p̄) with energy bounded from below are those
in which both p and p̄ belong to one of the orbits highlighted in red in Fig. 7.7. More
explicitly, zero-mode solutions (p0, p̄0) belong to orbits with energy bounded from
below if and only if both p0 and p̄0 are larger than (or equal to) the vacuum value
−c/24. For solutions that do not admit a rest frame, either p or p̄ (or both) must
belong to the unique massless orbit with energy bounded from below.

These arguments can be interpreted as a positive energy theorem for AdS3 gravity
[14, 15]. They imply in particular that, in the diagram of zero-mode solutions of
Fig. 8.5, all BTZ black holes belong to orbits with energy bounded from below,
while all conical excesses belong to orbits with unbounded energy. The pure AdS3
metric also belongs to an orbit with energy bounded from below, while the only
conical deficits whose energy is bounded from below under asymptotic symmetries
are those located in the square −c/24 ≥ p0, p̄0 ≥ 0. The absolute minimum of
energy among all solutions with energy bounded from below is realized by AdS3
space-time.

Remark Positive energy theorems in general relativity have a long history; in short,
the problem is to show that energy is bounded from below in a suitably defined
phase space of metrics. This problem is classically addressed in four-dimensional
asymptotically flat space-times, where positivity of energy was first proved in [60].
A supersymmetry-based proof can also be found in [61], while the case of the Bondi
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mass was settled shortly thereafter by various authors — see e.g. [62] for a list of
references. Note that a relation between positive energy theorems [63] and Virasoro
orbits was already suggested in footnote 8 of [64], albeit in a very different con-
text. In Sect. 9.3 we will encounter a positive-energy theorem in three-dimensional
asymptotically flat space-times.

8.4 Quantization and Virasoro Representations

Recall from Sect. 5.2 that the quantization of coadjoint orbits yields unitary group
representations. Assuming that this applies to the Virasoro group, unitary represen-
tations can be interpreted as quantized orbits of Brown–Henneaux metrics under
asymptotic symmetry transformations. Accordingly, we now investigate the relation
between unitary representations of the Virasoro algebra and AdS3 quantum gravity.
We start with an overview of sl(2, R) and Virasoro highest-weight representations,
which we interpret as particles dressed with gravitational degrees of freedom in
AdS3. We then conclude with the observation that Virasoro characters coincide with
quantum gravity partition functions in AdS3.

Remark This section is our first encounter with representations of Lie algebras in
this thesis, so our language and notations will be somewhat different from those of
part I. The link between the language of part I and Lie algebra representations will
be established through induced modules, in Sect. 10.2.

8.4.1 Highest-Weight Representations of sl(2,RRR)

Here we describe highest-weight unitary representations of the Lie algebra sl(2, R),
which will be useful guides for studying Virasoro representations. From a space-time
perspective, sl(2, R) is half of the isometry algebra of AdS3, so tensor products of
highest-weight representations of sl(2, R) are particles propagating in AdS3. Their
Minkowskian analogue are the Poincaré representations of Sect. 4.3.

Highest Weights and Descendants

The Lie algebra sl(2, R) of SL(2, R) consists of traceless real 2×2matrices; its basis
can be chosen as in (4.87), but for the purpose of describing unitary representations
it is convenient to use the complex basis

L0 ≡ −i t0 , L1 ≡ t1 + i t2 , L−1 ≡ −t1 + i t2 . (8.54)

Equivalently, Lm = i�m in terms of the basis (5.89) and the brackets (5.90) become

[Lm, Ln] = (m − n)Lm+n (8.55)

http://dx.doi.org/10.1007/978-3-319-61878-4_9
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withm, n = −1, 0, 1. In any unitary representationT of sl(2, R), the real generators
tμ are represented by anti-Hermitian operators acting in a suitable Hilbert space. In
terms of the generators (8.54), this is to say that the Hermiticity conditions

T [Lm]† = T [L−m] (8.56)

hold in a unitary representation. From now on we will abuse notation and neglect
writing the representationT , so thatT [Lm] ≡ Lm . This abuse is common in physics,
so it should not lead to any misunderstanding. Until the end of this chapter we also
use the Dirac notation instead of the less standard notation of part I.

Since the group SL(2, R) is simple but non-compact, all its non-trivial unitary rep-
resentations are infinite-dimensional. Fortunately, the complexification of sl(2, R)

coincides with that of su(2), and we definitely know how to build unitary highest-
weight representations of the latter. Let us therefore use the same approach for
sl(2, R): we start from a (normalized) highest-weight state |h〉 belonging to the
Hilbert space of the representation, such that

L0|h〉 = h|h〉, L1|h〉 = 0 , (8.57)

where h is the highest weight. The conditions (8.56) imply that the operator repre-
senting L0 is Hermitian, so h must be real. The interpretation of (8.57) is that |h〉 has
energy h if we think of L0 as the Hamiltonian, while L1 is an annihilation operator.6

In order to produce a representation we must also act with operators L−1 on the
highest-weight state. This leads to descendant states of the form

(L−1)
N |h〉, (8.58)

where the non-negative integer N is the level of the descendant. Each descendant
state is an eigenstate of L0 with eigenvalue h + N , so L−1 is analogous to a creation
operator.We then declare that the carrier spaceH of the representation is spanned by
all linear combinations of descendant states. Since we wantH to be a Hilbert space,
descendant states with different levels must be orthogonal because their eigenvalues
under L0 differ. Furthermore, all descendant states must have non-negative norm
squared. Using the Hermiticity conditions (8.56), this amounts to the requirement

0 ≤ ∥∥(L−1)
N |h〉∥∥2 = 〈

h
∣∣[(L−1)

N ]†(L−1)
N
∣∣h〉 (8.56)= 〈

h
∣∣(L1)

N (L−1)
N
∣∣h〉

.

To ensure that this condition holds, we evaluate scalar products of descendant states.
Thanks to the commutation relations (8.55) one finds

6The terminology is somewhat backwards, since the highest weight h is actually the lowest eigen-
value of L0 in the space of the representation; this terminological clash is standard.
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〈
h
∣∣(L1)

N (L−1)
N
∣∣h〉 = N !

N−1∏
k=0

(2h + k) (8.59)

where we have used 〈h|h〉 = 1. Thus, all descendant states have strictly positive
norm squared if and only if h > 0. If h = 0, then the representation is trivial.

Note that here the only restriction imposed on h by unitarity is h ≥ 0. However,
if we were to integrate a highest-weight representation of sl(2, R) into an exact
unitary representation of the group SL(2, R), then h would have to be an integer
in order to ensure that a rotation by 2π is represented by the identity. On the other
hand, projective representations of SL(2, R) allow h to be an arbitrary positive real
number since the fundamental group of SL(2, R) is isomorphic to Z.

Representations by Quantization

The representations just described can be identified with representations obtained by
quantizing suitable coadjoint orbits of SL(2, R). Indeed, note that the Lie algebra
(8.55) admits a quadratic Casimir operator

C = L2
0 − 1

2
(L1L−1 + L−1L1)

(8.54)= −t20 + t21 + t22 . (8.60)

This operator is proportional to the identity in any irreducible representation of
sl(2, R). In the highest-weight representation (8.58) it takes the value

C = h(h − 1), (8.61)

which proves by the way that the representation is irreducible. The fact that (8.60)
takes a constant value is reminiscent of the “mass shell” condition defining the
coadjoint orbit (5.93), and indeed the highest-weight representation just displayed
is the quantization of such an orbit for h > 0. The only subtlety is that the value of
the Casimir (8.61) is not quite h2, but h(h − 1); the two numbers coincide in the
semi-classical limit h → +∞, and the h − 1 of (8.61) may be seen as a quantum
correction of the classical result.

This identification is confirmed by the computation of SL(2, R) characters.
Indeed, the counting argument of the end of Sect. 5.3 can now be applied to the
space H spanned by the highest-weight state |h〉 and its descendants. As a result
one finds that Tr(q L0) is precisely given by formula (5.102) up to the replacement of
h+1/2 by h. From a space-time perspective, the product of two such characters is the
character of an irreducible representation of the isometry algebra so(2, 2) of AdS3.
If the two representations have weights h and h̄ say, the product of their characters
can be interpreted as the partition function of a particle with mass (h + h̄)/� and spin
h − h̄ propagating in AdS3.

http://dx.doi.org/10.1007/978-3-319-61878-4_5
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8.4.2 Virasoro Modules

We now generalize the representation theory of sl(2, R) to the Virasoro algebra.
Before doing so, a word of caution is in order: in the case of SL(2, R), we were able
to interpret highest-weight representations as quantized coadjoint orbits of the type
(5.93); this identification was supported by the matching of the Casimir operator
(8.61) with the definition of the orbit. In the case of the Virasoro algebra the situation
is complicated by the fact that all coadjoint orbits (at non-zero central charge) are
infinite-dimensional; in addition, the only Casimir operators of the Virasoro algebra
are functions of its central charge [65]. Accordingly, we start with a few comments
regarding Virasoro geometric quantization, before turning to the construction of its
highest-weight representations and the evaluation of the associated characters.

Semi-classical Regime

If one believes in the orbit method, geometric quantization applied to the coadjoint
orbits of the Virasoro algebra should produce unitary Virasoro representations. This
viewpoint was adopted in [64, 66, 67], with the conclusion that the quantization
of orbits with positive energy and constant representatives indeed provides highest-
weight representations in the large c limit. By contrast, the limit of small c is much
more elusive, and at present it is not known if the discrete series of Virasoro repre-
sentations at c ≤ 1 can be obtained by geometric quantization (see e.g. [68]). From
a gravitational point of view, the Virasoro central charge (8.40) is the AdS radius in
units of the Planck length, so large c corresponds to the semi-classical regime. This
is confirmed by symplectic geometry: the Kirillov–Kostant symplectic form (5.29)
evaluated at a constant Virasoro coadjoint vector (p0, c) is

ω(p0,c)
(
(ξm)p0 , (ξn)p0

) (6.111)= −im
(
2p0 + c

12
m2

)
δm+n,0 (8.62)

where ξm = ad∗
Lm

is the vector field on W(p0,c) that generates the coadjoint action
of the Virasoro generator Lm given by (6.109). The occurrence of c confirms that
the regime of large c is semi-classical in the sense that a large volume is assigned to
any portion of phase space. Conversely, small c corresponds to the non-perturbative
regime, where quantum corrections may alter classical results in a radical way.

This heuristic argument is consistent with the fact that geometric quantization
is relatively well established at large c, but poorly understood at small c. Since
applications to three-dimensional gravity rely on the semi-classical limit anyway,
from now on we restrict ourselves to the regime of large c. This assumption turns
out to greatly simplify representation theory, and allows us to think of highest-
weight Virasoro representations as quantizations of Virasoro orbits with constant
representatives.

This being said, to our knowledge there is as yet no strictmathematical proof of the
fact that geometric quantization of Virasoro orbits produces highest-weight represen-
tations, despite numerous attempts in the literature (see e.g. [69, 70]). Our viewpoint
here will be pragmatic, and we shall assume that the representations obtained by

http://dx.doi.org/10.1007/978-3-319-61878-4_5
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quantizing such orbits are indeed highest-weight representations. This assumption
will be supported, among other observations, by the fact that Virasoro characters
match suitable gravitational partition functions (see Sect. 8.4.4).

Highest-Weight Representations

The basis of the Virasoro algebra given by (6.109) is such that, in any unitary repre-
sentation, the operators representing the generators Lm +L−m , i(Lm −L−m) and Z
are anti-Hermitian. A more standard basis is given by

Lm ≡ iLm + i
Z
12

δm,0, Z ≡ iZ, (8.63)

where the constant shift in L0 ensures that the vacuum state has zero eigenvalue under
L0. According to this definition the operators representing Lm and Z in a unitary
representation satisfy the Hermiticity conditions

L†
m = L−m, Z† = Z (8.64)

where we abuse notation by denoting the basis element Lm and the operator that
represents it with the same symbol. In any irreducible representation the Hermitian
central operator Z is proportional to the identity with a coefficient c ∈ R, so we may
write the commutation relations of the operators representing the generators (8.63)
as

[Lm, Ln] = (m − n)Lm+n + c

12
m(m2 − 1)δm+n,0 . (8.65)

Here the existence of the sl(2, R) subalgebra (8.55) ismanifest, since the contribution
of the central extension vanishes for m = −1, 0, 1.

Highest-weight representations of the Virasoro algebra (8.65) seem to have first
appeared in [71–73], and were then further studied in [74–76]. They are built in
direct analogy to the highest-weight representations of sl(2, R). In accordance with
geometric quantization, the parameters that specify these representations coincide
with those that determine the corresponding coadjoint orbits. In the present case,
taking the orbit of a constant coadjoint vector (p0, c), one defines a real number h
by

p0 = h − c

24
. (8.66)

This ensures that h = 0 for the vacuum configuration, while h ≥ 0 for orbits
with energy bounded from below. With this notation, the representation obtained by
quantizing the orbit of (p0, c) is obtained as follows.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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To begin, in analogy with (8.57), one defines the highest-weight state of the
representation to be a normalized state |h〉 such that7

L0|h〉 = h|h〉, Lm |h〉 = 0 for m > 0. (8.67)

The state |h〉 is also called a primary state. Its definition ensures that it has energy
h under the Hamiltonian L0, while the operators Lm with m > 0 are annihilation
operators. In analogy with (8.58) one also defines descendant states

L−k1 . . . L−kn |h〉, 1 ≤ k1 ≤ k2 ≤ · · · ≤ kn . (8.68)

Thus one can interpret the operators L−m with m > 0 as creation operators. We will
discuss the gravitational interpretation of this representation in Sect. 8.4.4.

Using the commutation relations (8.65) of the Virasoro algebra, one verifies that
each descendant (8.68) is an eigenstate of L0 with eigenvalue

h +
n∑

i=1

ki ≡ h + N

where the non-negative integer N is the level of the descendant. One then declares
that the space H of the Virasoro representation is the Verma module spanned by
all linear combinations of descendant states. As in the case of sl(2, R), descendants
with different levels have different eigenvalues under L0. According to (8.64) the
latter must be Hermitian if the representation is to be unitary, so scalar products of
descendants with different levels vanish. However, in contrast to sl(2, R), there are in
general many different descendant states with the same level. More precisely, at large
central charge c, the number of different descendants at level N is the number p(N )

of partitions of N in distinct positive integers (e.g. p(0) = p(1) = 1, p(2) = 2,
p(3) = 3, p(4) = 5, etc.).

Note that the representation whose carrier space is spanned by the descendant
states (8.68) is an induced representation of the Virasoro algebra, i.e. an induced
module. Indeed, the conditions (8.67) define a one-dimensional representation of the
subalgebra generated by L0 and the Lm’s with m > 0, and the prescription (8.68) is
the algebraic analogue of the statement that wavefunctions live on a quotient space
G/H (recall Sect. 3.3). By the way, a similar interpretation holds for the highest-
weight representations of sl(2, R) displayed in Sect. 8.4.1. We will return to this
observation in Sect. 10.2.

7The actual value of the quantum weight h may differ from the classical parameter defined in (8.66)
by corrections of orderO(1/c), so from now on it is understood that h refers to the quantum value.
This subtlety will have very little effect on our discussion.

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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Unitarity for Virasoro Representations

We now ask whether the vector space spanned by |h〉 and its descendants is a Hilbert
space, given that Hermitian conjugation is defined by (8.64). Working only with
low-level descendant states, one can easily derive some basic necessary conditions
for unitarity. For instance, the only descendant at level one is L−1|h〉 and its norm
squared is 〈h|L1L−1|h〉 = 2h, so a necessary condition for unitarity is h ≥ 0.
Similarly, at level N there is a state L−N |h〉 with norm squared

〈h|L N L−N |h〉 (8.65)= 2Nh + c

12
N (N 2 − 1)

whose positivity for large N requires c ≥ 0. Thus, the only values of c and h
that give rise to unitary representations are positive. In terms of coadjoint orbits of
the Virasoro group, this is to say that only orbits with positive energy can produce
unitary representations under quantization. In order to go further one generally relies
on the so-called Gram matrix of the module, whose entries are the scalar products
of descendants. Demanding unitarity then boils down to the requirement that the
Grammatrix be positive-definite. One can show that this condition is always verified
by Virasoro highest-weight representations at large c. Since this is a standard result
in two-dimensional conformal field theory (see e.g. [77]), we simply state it here
without proof:

Proposition Highest-weight representations of the Virasoro algebra with c > 1 and
h > 0 are unitary and irreducible in the sense that all descendant states have strictly
positive norm squared.

Note that, by contrast, unitary highest-weight representations at central charge
c ≤ 1 have a very intricate structure due to null states, i.e. states with vanishing
norm that are modded out of the Hilbert space as in the definition (3.5) of L2 spaces.
In that case, not all descendant states (8.68) are linearly independent, since some of
them are effectively set to zero — in this sense the Verma module is reducible. We
will not take such subtleties into account here because we are interested only in the
limit of large central charge, where null states are absent.

Remark It was recently shown [78] that all irreducible unitary representations of the
Virasoro group with a spectrum of L0 bounded from below are highest-weight rep-
resentations of the type described here. In this sense, highest-weight representations
exhaust all unitary representations of the Virasoro algebra.

Vacuum Representation

In sl(2, R), the representationwith highestweight h = 0 is trivial since all descendant
states are null by virtue of Eq. (8.59). We now describe the Virasoro representation
obtained by setting h = 0, to which we refer as the vacuum representation. It
is obtained by quantizing the vacuum Virasoro orbit, containing the point pvac =
−c/24.

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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The highest weight state |0〉 of that representation satisfies the properties

L0|0〉 = L−1|0〉 = Lm |0〉 = 0 for all m > 0, (8.69)

which ensures that the vacuum state |0〉 is invariant under the sl(2, R) subalgebra
generated by L−1, L0 and L1; it is the quantum counterpart of the statement that the
stabilizer of the vacuum orbit is the group PSL(2, R). Crucially, the vacuum is not
invariant under the higher-mode generators L−2, L−3 etc. so that the representation
whose carrier space is spanned by all descendant states

L−k1 . . . L−kn |0〉, 2 ≤ k1 ≤ · · · ≤ kn (8.70)

is non-trivial. This representation is unitary for all c > 0, and it is free of null
states (i.e. irreducible) whenever c > 1. It is in many ways analogous to the stan-
dard highest-weight representation generated by the descendant states (8.68), but the
condition L1|0〉 = 0 makes it slightly smaller than generic highest-weight represen-
tations.

It may seem puzzling that the vacuum state is not left invariant by all Virasoro
generators but only by a subset thereof as in (8.69). The reason is that, at non-zero
central charge, it is impossible to define a non-zero state that is annihilated by all
Virasoro generators. Indeed, if there was such a state |0̃〉, then we would have

0 = 〈0̃|Ln L−n|0̃〉 (8.65)= 〈0̃|
(
2nL0 + c

12
n(n2 − 1)

)
|0̃〉 = c

12
n(n2 − 1)

〈
0̃|0̃

〉
,

which is a contradiction when c �= 0 and n �= −1, 0, 1. Hence the vacuum state of a
Virasoro-invariant theory is always sl(2, R)-invariant but never Virasoro-invariant.
One should appreciate the counter-intuitive nature of this phenomenon: it means
that even the absolute simplest Virasoro-invariant quantum theory is described by
an infinite-dimensional Hilbert space of vacuum descendants. In Sect. 10.1 we will
encounter a similar non-trivial vacuum representation for the BMS3 group.

8.4.3 Virasoro Characters

The relation between AdS3 quantum gravity and Virasoro representations is most
easily expressed in terms of partition functions, so as a preliminary we now evaluate
characters of highest-weight representations of the Virasoro algebra at c > 1.

LetH be the Hilbert space of an irreducible, unitary representations of the Vira-
soro algebra with central charge c and highest-weight h (if h = 0 we take the vacuum
representation). We define the character of the representation as

χ(τ ) ≡ TrH
[
q L0−c/24

]
, q ≡ e2πiτ (8.71)

http://dx.doi.org/10.1007/978-3-319-61878-4_10
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where the notation is almost the same as in Eq. (5.102). The parameter τ is a complex
number with positive imaginary part so that, if L0 is interpreted as the Hamiltonian,
then Im(τ ) is the inverse temperature and the character itself is a canonical partition
function. The normalization factor −c/24 is conventional.

Generic Highest-Weight Representations

Let h > 0 be a highest weight and c > 1 a large central charge. Consider the Verma
module spanned by all descendant states (8.68). Then there are no null states and
distinct descendants are linearly independent, so the spectrum of L0 consists of all
values h + N , with multiplicity p(N ). Accordingly, the character (8.71) reads

χ(τ ) =
∑
N=0

p(N )qh+N−c/24 = qh−c/24
+∞∑
N=0

p(N )q N . (8.72)

We now rewrite this in a more convenient way thanks to the following result:

Lemma The series (8.72) can be rewritten as an infinite product

+∞∑
N=0

p(N )q N =
+∞∏
n=1

1

1 − qn
. (8.73)

Proof We follow [79], to which we refer for a careful treatment of the convergence
issues that will not be addressed here. To prove (8.73) we consider its right-hand side
and expand each individual term of the infinite product as a geometric series:

+∞∏
n=1

1

1 − qn
=

+∞∏
n=1

+∞∑
k=0

qnk = (
1 + q + q2 + q3 + · · · ) (

1 + q2 + q4 + · · · ) · · ·

= 1 +
+∞∑
N=1

N∑
n=1

∑
k1,k2,...,kn

k1+k2+···+kn=N
1≤k1≤k2≤···≤kn︸ ︷︷ ︸

p(N )

qk1+k2+···+kn︸ ︷︷ ︸
q N

=
+∞∑
N=0

p(N )q N .

This concludes the argument. �

Thus the character (8.72) can be rewritten as

χ(τ ) = qh−c/24
+∞∏
n=1

1

1 − qn
= qh−(c−1)/24

η(τ )
(8.74)

http://dx.doi.org/10.1007/978-3-319-61878-4_5
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where in the second equality we have introduced the Dedekind eta function

η(τ ) ≡ q1/24
+∞∏
n=1

(1 − qn). (8.75)

The result (8.74) can be seen as an infinite product of sl(2, R) characters (5.102) with
parameters nτ . Equivalently, since sl(2, R) representations coincide with harmonic
oscillators whose partition functions were written in (5.102), one can think of a
Virasoro representation as an infinite collection of harmonic oscillators. This suggests
thatVirasoro characters can be interpreted as quantumfield theory partition functions,
whichwill be confirmed in Sect. 8.4.4 below. Note also the presence of the ubiquitous
factor 1 − qn in the denominator.

Remark Our derivation of (8.74) relied on the fact that the eigenvalue h + N of L0

has degeneracy p(N ). This is only true provided there are no null states, i.e. provided
c > 1. By contrast, for c ≤ 1, null states generally do exist and are modded out of the
Hilbert space of the representation. This leads to a smaller degeneracy of eigenvalues
of L0, hence to a character that is strikingly different from (8.74).We will not display
characters at c ≤ 1 here; see e.g. [80, 81] for explicit formulas.

Vacuum Representation

The character of the vacuum Virasoro representation can be evaluated in the same
way as for generic highest-weight representations. The only subtlety is that the vac-
uum is sl(2, R)-invariant, leading to a reduced number of descendant states (8.70).
Explicitly, let�(N ) denote the degeneracy of the eigenvalue N in the space spanned
by the vacuum descendants. For N ≥ 2, this degeneracy is the number of partitions
of N in positive integers which are strictly greater than one (thus �(0) = 1 by con-
vention but �(1) = 0, �(2) = �(3) = �(4) = �(5) = 1, �(6) = 2, etc.). Then
the vacuum character is

χ(τ ) =
+∞∑
N=0

�(N )q N−c/24 = q−c/24
+∞∑
N=0

�(N )q N . (8.76)

In order to relate �(N ) to the usual partition p(N ), we note that

�(N ) = p(N ) −
(
number of partitions of N
containing at least one “1”

)
= p(N ) − p(N − 1)

which allows us to rewrite the character (8.76) as

χvac,c(τ ) = q−c/24
+∞∑
N=0

p(N )q N (1 − q)
(8.73)= q−c/24

+∞∏
n=2

1

1 − qn
. (8.77)

http://dx.doi.org/10.1007/978-3-319-61878-4_5
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Note how the product in the denominator of (8.77) is truncated (no term n = 1) owing
to the sl(2, R) symmetry of the vacuum state. In particular the vacuum character
(8.77) is not just the limit h → 0 of the generic character (8.74).

8.4.4 Dressed Particles and Quantization

Since AdS3 gravity has Virasoro symmetry, its quantization is expected to produce
unitary representations of the direct sumof twoVirasoro algebras.Wenow investigate
towhat extent this is the case. For notational simplicitywedenote theVirasoro algebra
by vir (instead of V̂ect(S1)), so that the asymptotic symmetry algebra of AdS3 gravity
with Brown–Henneaux boundary conditions is vir ⊕ vir.

First let us make the proposal more precise: the orbit of a metric (p, p̄) is a
coadjoint orbit (8.53) of the product of two Virasoro groups with central charges
(8.40). For simplicity let us assume that the metric is a zero-mode and that its energy
is bounded from below under asymptotic symmetry transformations, so p(x+) =
p0 ≥ −c/24 and p̄(x−) = p̄0 ≥ −c̄/24. The non-zero modes belonging to the
orbit (8.53) may be seen as classical analogues of the descendant states (8.68). Upon
defining h ≡ p0+c/4 and h̄ ≡ p̄0+c̄/24, one expects that the geometric quantization
of the orbit (8.53) produces the tensor product of two highest-weight representations
of the Virasoro algebra labelled by (h, c) and (h̄, c̄).8 The same would be true by
quantizing the orbit of AdS3, except that the result would be the tensor product of
two vacuum representations.

It is worth comparing these representations to those of so(2, 2) ∼= sl(2, R) ⊕
sl(2, R), the isometry algebra of AdS3. Since the latter is a subalgebra of vir ⊕ vir,
any Virasoro representation with highest weights (h, h̄) contains many so(2, 2) sub-
representationswithweights increasing from (h, h̄) to infinity. Thus aVirasoro repre-
sentation is an so(2, 2) representation dressed with (infinitely many) extra directions
in the Hilbert space obtained by acting with the Virasoro generators L−2, L−3, etc.

Now recall that a particle propagating in AdS3 is an irreducible unitary represen-
tation of so(2, 2), while asymptotic symmetries generalize isometries by including
gravitational fluctuations. Accordingly one is led to interpret Virasoro representa-
tions as particles in AdS3 dressed with some extra gravitational degrees of freedom
accounted for by the modes Ln that do not appear in the isometry algebra. These are
quantum analogues of the classical “boundary gravitons” described in Sect. 8.3.2.
Thus a Virasoro representation is a particle in AdS3 dressed with boundary gravi-
tons. In particular the vacuum representation of vir⊕vir is identified with the Hilbert
space of quantum boundary gravitons around pure AdS3.

8As before, the quantum values of (h, h̄) may differ from their classical counterparts by 1/c cor-
rections.
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As a verification of the fact that Virasoro symmetry is realized in AdS3 quantum
gravity, one may wonder whether the quantum partition function of gravity repro-
duces a (combination of) Virasoro character(s). This computation was carried out
in [82], where the authors evaluated the one-loop partition function of gravity on
AdS3 at finite temperature 1/β and angular potential θ (both taken to be real). Upon
combining these numbers into a modular parameter

τ ≡ 1

2π

(
θ + i

β

�

)
, (8.78)

it was found that the gravitational one-loop partition function reads

Zgrav(β, θ) = Tr
(

q L0−c/24q̄ L̄0−c/24
)

= |q|c/12
+∞∏
n=2

1

|1 − qn|2 (8.79)

where q ≡ e2πiτ and q̄ is its complex conjugate. This is precisely the character
of the tensor product of two Virasoro vacuum representations, which confirms that
quantized boundary gravitons around AdS3 span an irreducible highest-weight rep-
resentation of vir ⊕ vir. The same computation can be performed for orbifolds of
AdS3 obtained by imposing identifications of the form ϕ ∼ ϕ + 2π/N in terms of
cylindrical coordinates, where N ∈ N

∗. The corresponding metric is that of a conical
deficit labelled by the Virasoro coadjoint vectors p0 = p̄0 = −c/(24N 2). For N ≥ 2
the resulting one-loop partition function is found to be

Zgrav,N(β, θ) = |q|2h
+∞∏
n=1

1

|1 − qn|2 (8.80)

where h = c
24 (1 − 1/N 2). This is again the character of the tensor product of two

highest-weight representations of the Virasoro algebra with weights h = h̄, which
confirms the interpretation of Virasoro modules as particles dressed with boundary
gravitons.

In Chap.10wewill develop a similar interpretation for BMS3 particles, whichwill
then be confirmed in Chap.11 by the matching of BMS3 characters with one-loop
partition functions for asymptotically flat gravity and higher-spin theories.

Remark In [19] it was conjectured that the one-loop partition function (8.79) is exact
because it is the only expression compatible with Virasoro symmetry. Higher loop
corrections would then renormalize the Brown–Henneaux central charge but would
leave the q-dependent one-loop determinant unaffected. This conjecture was used to
evaluate a Farey tail sum representing the putative full, non-perturbative, partition
function of AdS3 gravity (see also [83]). To our knowledge the one-loop exactness
of (8.79) is still an unproven statement.

http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_11
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A Note on the Fabri-Picasso Theorem

Quantizing the orbit of the AdS3 metric under Brown–Henneaux transformations
yields the vacuum representation of vir ⊕ vir, whose highest-weight state |0〉 is
annihilated by all so(2, 2) generators. But the Virasoro generators Lm, L̄m with m ≤
−2 do not leave the vacuum invariant. Thus Virasoro symmetry is spontaneously
broken in AdS3 gravity, and the descendant states

L−k1 . . . L−kn L̄−�1 . . . L̄−�m |0〉 (8.81)

can be loosely interpreted as Goldstone bosons obtained by acting on the vacuum
with broken symmetry generators. This interpretation has come to be standard in the
realm of asymptotic symmetries; in four dimensions it leads to the identification of
soft graviton states with Goldstone bosons for spontaneously broken BMS symmetry
[84].

This being said, one should keep inmind that the comparison to Goldstone bosons
should be handled with care. Indeed, spontaneously broken internal symmetries are
always such that states obtained by acting with broken symmetry generators on
the vacuum do not belong to the Hilbert space. This statement is the Fabri-Picasso
theorem (see e.g. [85]), and it follows from the fact that the norm of the state Q|0〉
has an infrared (volume) divergence whenever Q generates a broken global internal
symmetry. If the Fabri-Picasso theorem was to hold for asymptotic symmetries,
then the descendant states (8.81) would make no sense. Fortunately the situation of
asymptotic symmetries is different because the charges that generate themare surface
charges (8.9) rather thanNoether charges. As a result, when Q is a broken asymptotic
symmetry generator, the norm squared of Q|0〉 is an integral over a compactmanifold,
and is therefore finite. In this sense spontaneously broken asymptotic symmetries
behave in a way radically different from spontaneously broken internal symmetries.
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50. C. Crnković, E. Witten, Covariant description of canonical formalism in geometrical theories
51. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Int. J.

Theor. Phys. 38, 1113–1133 (1999), arXiv:hep-th/9711200 [Adv. Theor. Math. Phys. 2, 231
(1998)]

52. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998),
arXiv:hep-th/9802150

53. J. Kim, M. Porrati, On a canonical quantization of 3D anti de Sitter pure gravity. JHEP 10, 096
(2015), arXiv:1508.03638

54. C. Troessaert, Poisson structure of the boundary gravitons in 3D gravity with negative�. Class.
Quantum Gravity 32(23), 235019 (2015), arXiv:1507.01580

55. G. Compère, P.-J. Mao, A. Seraj, M.M. Sheikh-Jabbari, Symplectic and killing symmetries of
AdS3 gravity: holographic vs boundary gravitons. JHEP 01, 080 (2016), arXiv:1511.06079

56. E.J. Martinec, Conformal field theory, geometry, and entropy, arXiv:hep-th/9809021
57. E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359
58. M.M. Sheikh-Jabbari, H. Yavartanoo, On 3d bulk geometry of Virasoro coadjoint orbits: orbit

invariant charges and Virasoro hair on locally AdS3 geometries, arXiv:1603.05272
59. A. Seraj, Conserved charges, surface degrees of freedom, and black hole entropy. Ph.D. thesis

(2016), arXiv:1603.02442
60. R. Schon, S.-T. Yau, Proof of the positive mass theorem. 2. Commun. Math. Phys. 79, 231–260

(1981)
61. E.Witten, A simple proof of the positive energy theorem. Commun.Math. Phys. 80, 381 (1981)

http://arxiv.org/abs/0708.3153
http://arxiv.org/abs/0906.4926
http://arxiv.org/abs/0710.0919
http://arxiv.org/abs/1010.0899
http://arxiv.org/abs/hep-th/9812032
http://arxiv.org/abs/hep-th/9902121
http://arxiv.org/abs/hep-th/0011230
http://arxiv.org/abs/1303.3296
http://arxiv.org/abs/1303.2662
http://arxiv.org/abs/0901.2874
http://arxiv.org/abs/1006.0273
http://arxiv.org/abs/0903.2933
http://arxiv.org/abs/1301.1347
http://arxiv.org/abs/gr-qc/9604005
http://arxiv.org/abs/hep-th/9805087
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/1508.03638
http://arxiv.org/abs/1507.01580
http://arxiv.org/abs/1511.06079
http://arxiv.org/abs/hep-th/9809021
http://arxiv.org/abs/0706.3359
http://arxiv.org/abs/1603.05272
http://arxiv.org/abs/1603.02442


References 283

62. R.M. Wald, General relativity (1984)
63. D.R. Brill, S. Deser, Variational methods and positive energy in general relativity. Ann. Phys.

50, 548–570 (1968)
64. E. Witten, Coadjoint orbits of the Virasoro group. Commun. Math. Phys. 114, 1 (1988)
65. B. Feigin, D. Fuks, Casimir operators in modules over Virasoro algebra. Dokl. Akad. Nauk

SSSR 269(5), 1057–1060 (1983)
66. W. Taylor, Virasoro representations on DiffS1/S1 coadjoint orbits, arXiv:hep-th/9204091
67. W. Taylor, Coadjoint orbits and conformal field theory. Ph.D. thesis, UC, Berkeley (1993),

arXiv:hep-th/9310040
68. H.-S. La, P.C.Nelson,A.S. Schwarz, Remarks onVirasoromodel space. Conf. Proc.C9003122,

259–265 (1990)
69. H. Airault, P. Malliavin, Unitarizing probability measures for representations of Virasoro alge-

bra. Journal de Mathématiques Pures et Appliquées 80(6), 627–667 (2001)
70. H. Airault, P. Malliavin, A. Thalmaier, Support of Virasoro unitarizing measures. Comptes

Rendus Mathematique 335(7), 621–626 (2002)
71. B. Feigin, D. Fuks, Verma modules over the Virasoro algebra. Funkts. Anal. Prilozh. 17(3),

91–92 (1983)
72. B. Feigin, D. Fuchs, Verma modules over the Virasoro algebra, in Topology, ed. by L.D.

Faddeev, A.A. Malcev. Lecture Notes in Mathematics, vol. 1060 (Springer, Berlin, 1984), pp.
230–245

73. B. Feigin, D. Fuchs, Representations of the Virasoro algebra. Reports: Matematiska Institutio-
nen. Department, University (1986)

74. G. Segal, Unitary representations of some infinite-dimensional groups. Commun. Math. Phys.
80(3), 301–342 (1981)

75. V.G. Kac, Some problems on infinite dimensional Lie algebras and their representations, Lie
Algebras and Related Topics: Proceedings of a Conference Held at New Brunswick, New Jersey,
29–31 May 1981 (Springer, Berlin, 1982), pp. 117–126

76. P. Goddard, A. Kent, D. Olive, Unitary representations of the Virasoro and super-Virasoro
algebras. Commun. Math. Phys. 103(1), 105–119 (1986)

77. P. Di Francesco, P. Mathieu, D. Senechal, Conformal Field Theory, Graduate Texts in Contem-
porary Physics (Springer, New York, 1997)

78. H. Salmasian, K.-H. Neeb, Classification of positive energy representations of the Virasoro
group, arXiv:1402.6572

79. T. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics
(Springer, New York, 1998)

80. A.Wassermann,Direct proofs of the Feigin-Fuchs character formula for unitary representations
of the Virasoro algebra (2010), arXiv:1012.6003

81. A. Wassermann, Kac-Moody and Virasoro algebras (2010), arXiv:1004.1287
82. S. Giombi, A. Maloney, X. Yin, One-loop partition functions of 3D gravity. JHEP 08, 007

(2008), arXiv:0804.1773
83. C.A. Keller, A. Maloney, Poincare series, 3D gravity and CFT spectroscopy. JHEP 02, 080

(2015), arXiv:1407.6008
84. A. Strominger, On BMS invariance of gravitational scattering. JHEP 07, 152 (2014),

arXiv:1312.2229
85. I.J.R. Aitchison, A.J.G. Hey, Gauge Theories in Particle Physics, Graduate Student Series in

Physics (Taylor & Francis, New York, 2004)

http://arxiv.org/abs/hep-th/9204091
http://arxiv.org/abs/hep-th/9310040
http://arxiv.org/abs/1402.6572
http://arxiv.org/abs/1012.6003
http://arxiv.org/abs/1004.1287
http://arxiv.org/abs/0804.1773
http://arxiv.org/abs/1407.6008
http://arxiv.org/abs/1312.2229


Part III
BMS3 Symmetry and Gravity in Flat Space

This part contains the original contributions of the thesis and is devoted to Bondi–
Metzner–Sachs (BMS) symmetry in three dimensions. It starts with an introductory
chapter where the definition of the BMS3 group is motivated by asymptotic sym-
metry considerations. We then move on to the quantization of BMS3 symmetry and
show that irreducible unitary representations of the BMS3 group, i.e.BMS3 particles,
are classified by supermomentum orbits that coincide with coadjoint orbits of the
Virasoro group. We also evaluate the associated characters and show that they coin-
cide with one-loop partition functions of the gravitational field at finite temperature
and angular potential. Finally, we extend this matching to higher spin theories and
supergravity in three dimensions.



Chapter 9
Classical BMS3 Symmetry

The Bondi–Metzner–Sachs (BMS) group is an infinite-dimensional symmetry group
of asymptotically flat gravity at null infinity, that extends Poincaré symmetry. It was
originally discovered in four space-time dimensions in the seminal work of Bondi,
Van der Burg, Metzner [1, 2] and Sachs [3, 4]. In this chapter we introduce BMS
symmetry in three dimensions [5] and describe its classical aspects, i.e. those that
do not rely on its realization as the quantum symmetry group of a Hilbert space. We
will show in particular that the phase space of asymptotically flat gravity coincides
with (a hyperplane in) the coadjoint representation of the centrally extended BMS3
group.

The structure is as follows. In Sect. 9.1 we show how BMS3 symmetry emerges
from an asymptotic symmetry analysis. Section9.2 is devoted to the abstract math-
ematical definition of the BMS3 group and its central extension, including their
adjoint and coadjoint representations. In Sect. 9.3 we describe the phase space of
three-dimensional asymptotically flat gravity embedded in the space of the coadjoint
representation of BMS3. Finally, in Sect. 9.4 we show how BMS3 symmetry can be
seen as a flat limit of Virasoro symmetry.

This chapter is mostly based on [6–8], although the first section follows the earlier
references [9, 10]. As usual, more specialized references will be cited in due time.

9.1 BMS Metrics in Three Dimensions

The purpose of this section is to explain how the BMS3 group (and its central exten-
sion) emerges as an asymptotic symmetry of three-dimensional Minkowskian space-
times at null infinity. In particular we describe the embedding of Poincaré transfor-
mations and the action of BMS3 on the covariant phase space of the system, and
observe the appearance of a classical central extension.We refer to Sect. 8.1 for some
background on three-dimensional gravity and asymptotic symmetries in general.

© Springer International Publishing AG 2017
B. Oblak, BMS Particles in Three Dimensions, Springer Theses,
DOI 10.1007/978-3-319-61878-4_9
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9.1.1 Three-Dimensional Minkowski Space

Minkowski space in three dimensions is the manifold R
3 endowed with a metric

whose expression in inertial coordinates (t, x, y) = (x0, x1, x2) is

ds2 = −dt2 + dx2 + dy2 = ημνdx
μdxν (9.1)

where (ημν) is the Minkowski metric (4.35) in D = 3 dimensions. In general-
relativistic terms Minkowski space-time is the maximally symmetric solution of
Einstein’s equations with vanishing cosmological constant.

The isometry group ofMinkowski space is the Poincaré group (4.39) with D = 3:
IO(2, 1) = O(2, 1) � R

3. Its elements are pairs ( f,α) acting transitively on R
3,

xμ �→ f μ
νx

ν + αμ , (9.2)

where ( f μ
ν) is a Lorentz transformation while αμ is a space-time translation. The

stabilizer of the origin xμ = 0 is the Lorentz group, confirming the obvious diffeo-
morphism R

3 ∼= IO(2, 1)/O(2, 1).
While inertial coordinates are the most common in Minkowski space, a different

set of coordinates will be more convenient for the description of BMS3 symmetry.
Namely, as in (1.4), we define retarded Bondi coordinates (r,ϕ, u) by

r ≡
√
x2 + y2 , eiϕ ≡ x + iy

r
, u ≡ t − r , (9.3)

whose range is r ∈ [0,+∞[ , u ∈ R, and ϕ ∈ R with the identification ϕ ∼ ϕ+ 2π.
In that context the coordinate u is known as retarded time. We will also refer to the
coordinates (r,ϕ, t) as cylindrical coordinates; they are analogous to (8.15) in AdS3.
In terms of cylindrical and Bondi coordinates, the Minkowski metric (9.1) reads

ds2 = −dt2 + dr2 + r2dϕ2 = −du2 − 2dudr + r2dϕ2 (9.4)

which is the three-dimensional analogue of (1.5). Bondi coordinates are represented
on the Penrose diagram of Minkowski space in Fig. 1.1. Note that parity acts as
ϕ �→ −ϕ.

Killing Vectors

The Killing vector fields that generate Poincaré transformations (9.2) are simplest to
write down in inertial coordinates, where they have the general form

ξ(x) = (
αρ + Xμxνεμν

ρ
)
∂ρ . (9.5)

Here αμ and Xμ are two arbitrary, constant vectors generating translations and
Lorentz transformations, respectively, while εμνρ is the completely antisymmetric
tensor such that ε012 = 1 (indices are raised and loweredwith theMinkowski metric).

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_1
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In particular, the component α0 is responsible for time translations, while α1 and α2

generate translations in the directions x = x1 and y = x2, respectively. The com-
ponent X0 is responsible for spatial rotations while X1 and X2 give rise to boosts in
the directions x1 and x2, respectively.

For later comparison with asympotic symmetries it is convenient to rewrite the
Killing vectors (9.5) in Bondi coordinates (9.3). For pure translations we find

ξTranslation = α(ϕ)∂u − α′(ϕ)

r
∂ϕ + α′′(ϕ)∂r (9.6)

where the function α(ϕ) is related to the translation vector αμ by

α(ϕ) = α0 − α1 cosϕ − α2 sinϕ . (9.7)

For pure Lorentz transformations we similarly obtain

ξLorentz = (
X (ϕ) − u

r
X ′′(ϕ)

)
∂ϕ + uX ′(ϕ)∂u − (

r X ′(ϕ) − uX ′′′(ϕ)
)
∂r (9.8)

where the function X (ϕ) is related to the boost vector Xμ by

X (ϕ) = X0 − X1 cosϕ − X2 sinϕ . (9.9)

Note that both (9.6) and (9.8) depend on functions on the circle; already at this stage
it is tempting to speculate that there exist boundary conditions such that asymptotic
symmetry generators take that form with arbitrary functions (X,α) on the circle.
The BMS boundary conditions below will do just that.1

The structure of the algebra spanned by the vector fields (9.6) and (9.8) can be
mademore transparent by a suitable choice of basis. Thus we define the complexified
Poincaré generators

jm ≡ ξLorentz

∣
∣
∣
X (ϕ)=eimϕ

, pm ≡ ξTranslation

∣
∣
∣
α(ϕ)=eimϕ

where m, n = −1, 0, 1. The resulting Lie brackets read

i[ jm, jn] = (m − n) jm+n , i[ jm, pn] = (m − n)pm+n , i[pm, pn] = 0 ,

(9.10)

withm, n = −1, 0, 1. The Lie algebra of the BMS3 group will extend these brackets
by allowing arbitrary integer values of m, n, in the same way that the Witt algebra
(6.24) extends sl(2, R). Note that the structure G � g of the Poincaré group (4.93)
is manifest in these relations, as the bracket of j’s with p’s takes exactly the same
form as the bracket of j’s with themselves.

1We are cheating in (9.8), since for now there is no way to distinguish X ′′′(ϕ) from −X ′(ϕ); the
justification for this combination of derivatives will be provided by asymptotic symmetries.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_4


290 9 Classical BMS3 Symmetry

9.1.2 Poincaré Symmetry at Null Infinity

Null Infinities and Celestial Circles

In preparation for the asymptotic analysis to come, note that in Bondi coordinates
the region r → +∞ at finite ϕ and u is a cylinder spanned by coordinates (ϕ, u)

at future null infinity. It is the upper cone on the boundary of the Penrose diagram
of Fig. 1.1. This is due to our choice of coordinates: instead of (9.3) we could have
defined advanced Bondi coordinates, with advanced time given by v = t + r instead
of u = t − r . As a result we would have found that the region r → +∞ is past
null infinity, but up to this difference the whole construction would have been the
same. In this thesis we use retarded Bondi coordinates throughout, but it is always
understood that a parallel construction exists in terms of advancedBondi coordinates.
In particular the region r → +∞ will always be future null infinity, denoted I +.

Future null infinity is the region of space-time where all light rays eventually
escape; similarly past null infinity is the origin of all incoming light rays. In optical
terms, if we were living in a three-dimensional space-time, the region that we would
see around us would be a circle on our past light-cone. As the distance from us to
the circle increases, the latter approaches past null infinity. A similar (time-reversed)
interpretation holds for future null infinity, and justifies the following terminology:

Definition The future celestial circle at retarded time u associated with the Bondi
coordinates (r,ϕ, u) is the circle spanned by the coordinate ϕ on future null infinity,
and at fixed time u. Similarly the past celestial circle at advanced time v is the circle
at fixed time v on past null infinity.

This definition is illustrated in Fig. 1.2. From now on the words “celestial circle”
always refer to a future celestial circle. As we shall see, BMS3 symmetry will refor-
mulate and generalize the action of Poincaré transformations on celestial circles, and
more generally on null infinity.

Poincaré Transformations on I +

Since we have rewritten Minkowski Killing vectors in Bondi coordinates, it is worth
asking whether one can write finite Poincaré diffeomorphisms (9.2) (as opposed to
infinitesimal vector fields) in Bondi coordinates. The answer is obviously yes, but the
result is not particularly illuminating because the linear nature of the transformations
is hidden when writing them in terms of (r,ϕ, u). Fortunately, Bondi coordinates
are designed so that things simplify at null infinity; in particular it turns out that
Poincaré transformations preserve the limit r → +∞ in the sense that (i) they map
r on a positive multiple of itself and (ii) they affect ϕ and u but leave them finite.
Accordingly Poincaré transformations are well-defined at null infinity and one may
ask how they act on the coordinates (ϕ, u) spanningI +. The procedure for finding
this action is explained in greater detail in [11].

For definiteness we focus on the connected Poincaré group (4.40). We can use
the isomorphism (4.83) to describe Lorentz transformations in terms of SL(2, R)

matrices, the correspondence being given explicitly by (4.91). One then finds that a
pure space-time translation xμ �→ xμ + αμ acts on null infinity according to

http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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(u,ϕ) �→ (
u + α(ϕ),ϕ

)
(translation) (9.11)

where the function α(ϕ) is related to the components αμ by (9.7). In particular, pure
time translations act on Bondi coordinates as u �→ u+α0, without affecting the other
coordinates. Similarly, a Lorentz transformation specified by an SL(2, R) matrix
(6.86) acts onI + according to (u,ϕ) �→ (

f ′(ϕ)u, f (ϕ)
)
where f (ϕ) is a projective

transformation (6.88) of the celestial circle,with parameters A, B given by (6.89). For
instance, spatial rotations act asϕ �→ ϕ+θ, leaving all other coordinates untouched.
This is analogous to the four-dimensional situation described in Eqs. (1.6) and (1.7).
Upon performing simultaneously a translation α and a Lorentz transformation f , the
transformation of (u,ϕ) reads

(u,ϕ) �→
(
f ′(ϕ)u + α( f (ϕ)) , f (ϕ)

)
(9.12)

where f takes the form (6.88) while α is given by (9.7). As we shall see below,
the BMS3 group acts on I + in the same way, except that f (ϕ) will be an arbitrary
diffeomorphism of the circle and that α(ϕ)will be an arbitrary function on the circle.
Analogous results hold at past null infinity.

Note that in (9.12) we are abusing notation slightly. Indeed, a Poincaré transfor-
mation is a diffeomorphism of the whole space-time (not just null infinity) and acts
on all three coordinates r,ϕ, u. In particular the transformation law (9.12) only holds
up to corrections of order 1/r . These corrections vanish in the limit r → +∞ and
leave out only the leading piece displayed in (9.12), but they matter for the extension
of Poincaré (or BMS) transformations from the boundary into the bulk.

9.1.3 BMS3 Fall-Offs and Asymptotic Symmetries

We now wish to define a family of metrics on R
3 that are “asymptotically flat” at

future null infinity in the sense that they approach the Minkowski metric (9.4) near
the boundary of space-time. As in the AdS3 case above, a good starting point is to
ask what is the minimum amount of metrics that one wants to include; clearly, pure
Minkowski space should be there, but in addition one may include conical deficits.
These are defined by cutting out a wedge of angular opening 2π(1 − 2ω) out of the
middle of space and quotienting Minkowski space-time with identifications of the
type (8.22) in terms of cylindrical coordinates. The change of coordinates (8.23) then
turns the metric of (quotiented) Minkowski space into

ds2 = (dt ′ − Adϕ′)2 + dr ′2 + 4ω2r ′2dϕ′2, (9.13)

which is the flat limit (� → +∞) of Eq. (8.24). In these terms there are no identi-
fications on t ′, and ϕ′ is 2π-periodic. As in the AdS3 case the cross-term Adt ′dϕ′
suggests that A is proportional to angular momentum, as will indeed be the case

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
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below. In contrast to AdS3, however, the region of large r ′ is always free of closed
time-like curves since the condition for the integral curves of ∂ϕ′ to be space-like
now simply yields r ′2 > A2/(4ω2), without condition on the ratio of A and ω. This
is a flat limit of the more stringent conditions (8.25) encountered in AdS3. We refer
for instance to [12, 13] for a more thorough study of conical deficits.

Now suppose we wish to find boundary conditions that include such conical
deficits. If we want the asymptotic symmetry group to contain the Poincaré group,
we are forced to include in the phase space all metrics obtained by performing
rotations, translations and boosts of conical deficits. This is the same argument as
in Sect. 8.2, where we derived Brown–Henneaux boundary conditions. It leads to
a class of metrics with prescribed asymptotic behaviour at null infinity, analogous
to Eq. (8.27) in the AdS3 case. Some of the subleading components of the metric
can then be set to zero identically as a gauge choice, which leads to the following
definition:

DefinitionLetM be a three-dimensionalmanifoldwith a pseudo-Riemannianmetric
ds2. Suppose there exist local Bondi coordinates (r,ϕ, u) onM, defined for r larger
than some lower limit, such that the region r → +∞ be a two-dimensional cylinder
at future null infinity and such that the asymptotic behaviour of the metric be

ds2
r→+∞∼ O(1)du2 − (

2 + O(1/r)
)
dudr + r2dϕ2 + O(1)dudϕ . (9.14)

Then we say that (M, ds2) is asymptotically flat at future null infinity in the BMS
gauge. A parallel construction exists at past null infinity.

The BMS gauge condition is the flat space analogue of the Fefferman–Graham
gauge used in (8.28). We stress that it is truly a gauge condition in the sense of
asymptotic symmetries: the diffeomorphism used to bring a metric from a general
asymptotically flat form into the BMS gauge is trivial, as it does not affect the surface
charges of themetric. By contrast, the diffeomorphisms that change the physical state
of the system are generated by non-zero surface charges and span the asymptotic
symmetry group of the system, which will turn out to be the BMS3 group. From now
on, when dealing with asymptotically flat gravity, we always restrict our attention to
metrics satisfying the BMS boundary conditions (9.14). Note that asymptotically flat
space-times need not be (and generally are not) globally diffeomorphic toMinkowski
space; the definition (9.14) only requires r to be larger than some lower limiting value.
Note also that there is no restriction on the sign of the fluctuating components in the
metric (9.14); in particular the term of order r0 multiplying du2 may be positive.

Asymptotic Killing Vectors

The asymptotic Killing vector fields associated with flat boundary conditions (in
BMS gauge) are vector fields that generate diffeomorphisms which preserve the fall-
off conditions (9.14). This is to say that, if gμν is an asymptotically flat metric, its
Lie derivative under such a vector field ξ must satisfy

Lξgrr = Lξgrϕ = Lξgϕϕ = 0 (9.15)

http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
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together with

Lξguu = O(1), Lξguϕ = O(1), Lξgur = O(1/r) (9.16)

in terms of retarded Bondi coordinates. Here (9.15) follows from the fact that the
components grr = grϕ = 0 and gϕϕ = r2 are fixed in the BMS gauge (9.14); by
contrast the components guu , guϕ and gur are allowed to fluctuate by terms of order
r0, r0 and r−1 respectively.

Lemma Let gμν be an asymptotically flat metric in the sense (9.14) and let ξ be a
vector field that satisfies (9.15) and (9.16). Then

ξ = X (ϕ)∂ϕ + (
α(ϕ) + uX ′(ϕ)

)
∂u − r X ′(ϕ)∂r + (subleading) (9.17)

where X (ϕ) and α(ϕ) are two arbitrary (smooth) 2π-periodic functions, while the
subleading terms take the form

[
(α′ + uX ′′)

∫ +∞

r

dr ′

r ′2 gur

]
∂ϕ

+
[
∂ϕ

(
(α′ + uX ′′)

∫ +∞

r

dr ′

r ′2 gur

)
+ 1

r2
(α′ + uX ′′)guϕ

]
∂r =

= 1

r
(α′ + uX ′′)∂ϕ + 1

r
(α′′ + uX ′′′)∂r + O(r−2) .

(9.18)

These formulas uniquely associate an asymptotic Killing vector field ξ with an
asymptotically flat metric gμν and two functions

(
X (ϕ),α(ϕ)

)
on the celestial circle;

the dependence of ξ on these functions is linear.

Proof Let gμν be an asymptotically flat metric (9.14). First note that the condition
Lξgrr = 0 yields ∂rξ

u = 0, so ξu is r -independent. On the other hand the condition
Lξgrϕ = 0 gives a differential equation ∂rξ

ϕ = − 1
r2 gru∂ϕξu , which is solved by

ξϕ = X (u,ϕ) + ∂ϕξu
∫ +∞

r

dr ′

r ′2 gr ′u (9.19)

where X (u,ϕ) is an arbitrary function on the cylinder at null infinity. The integral
over r ′ converges since gru = −1 + O(1/r) by virtue of (9.14), so that ξϕ =
X (u,ϕ) + 1

r ∂ϕξu +O(1/r2). At this point we introduce a function α(u,ϕ) defined
by

ξu = α(u,ϕ) + uX ′(u,ϕ) (9.20)

(prime denotes partial differentiation with respect to ϕ), which is allowed by virtue
of the fact that ξu is r -independent. In these terms the condition Lξgϕϕ = 0 gives

ξr = −r∂ϕξϕ − 1

r
guϕ(α′ + uX ′′) (9.21)
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where ξϕ is given by (9.19). Since we now know that the most general solution
ξ of (9.15) is determined by two functions X (u,ϕ) and α(u,ϕ) on null infinity,
we can use the remaining conditions (9.16) to constrain these functions. Using first
Lξgur = O(1/r), we find

∂uξ
u = X ′, (9.22)

which upon rewriting ξu as (9.20) says that the combination ∂uα + u∂u X ′ vanishes.
The requirementLξguϕ = O(1) then yields ∂u X = 0, which is to say that X (u,ϕ) =
X (ϕ) only depends on the coordinate ϕ on the celestial circle. Plugging this back
into (9.22) then yields ∂uα = 0 as well. Formula (9.17) follows, while the subleading
terms (9.18) are produced by (9.19) and (9.21). �

Note that the asymptotic Killing vectors (9.17) precisely take the anticipated form
(9.6)–(9.8) and generalize Poincaré transformations in an infinite-dimensional way.
In particular the asymptotic symmetry group contains all space-time translations
(corresponding to α(ϕ) of the form (9.7)) and all Lorentz transformations (corre-
sponding to X (ϕ) of the form (9.9)).We shall denote by ξ(X,α) the asymptotic Killing
vector determined by the functions X (ϕ) andα(ϕ). One verifies that the Lie brackets
of such vector fields read

[
ξ(X,α), ξ(Y,β)

] = ξ([X,Y ],[X,β]−[Y,α]) + (subleading) (9.23)

where the brackets in the subscript on the right-hand side are understood to be
standard Lie brackets on the circle, e.g. [X,α] ≡ Xα′ − αX ′. The subleading terms
can be neglected because they will turn out not to contribute to the surface charges;
alternatively, as in the AdS3 case, they can be absorbed by a redefinition of the Lie
bracket such that the algebra is realized everywhere in the bulk [14, 15].

The structure of the algebra (9.23) can be made more transparent by decomposing
the functions

(
X (ϕ),α(ϕ)

)
in Fourier modes and defining the vector fields

jm ≡ ξ(eimϕ,0), pm ≡ ξ(0,eimϕ). (9.24)

As one can verify, formula (9.23) implies that their Lie brackets take the form (9.10)
with arbitrary integer labels m, n, up to subleading corrections.

Thus we now know that the asymptotic symmetries of three-dimensional
Minkowskian space-times span an algebra that contains the Witt algebra (extend-
ing the Lorentz algebra) and an infinite-dimensional Abelian algebra (extending
space-time translations). The corresponding asymptotic symmetry transformations
are referred to as superrotations and supertranslations, respectively2; they span an
infinite-dimensional algebra known as the BMS algebra in three dimensions, that
we shall denote as bms3. Finite BMS3 transformations act on null infinity according
to formula (9.12), where f (ϕ) is an arbitrary diffeomorphism of the celestial circle
while α(ϕ) is an arbitrary function on the circle.

2The prefix “super” has nothing to do with supersymmetry, but stresses the fact that special-
relativistic quantities are extended in an infinite-dimensional way.
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We refrain from analysing the group-theoretic aspects of these symmetries at this
point — this will be the subject of all later sections in this chapter. Instead, we
now keep going in our study of asymptotically flat gravity; in particular we actually
still have to confirm that superrotations and supertranslations are indeed non-trivial
asymptotic symmetries, i.e. that the associated surface charges do not vanish.

Remark One should keep in mind that Bondi coordinates are global, since the
definition (9.3) covers all points of Minkoswki space-time. Thus the fact that Bondi
coordinates allow one to describe either only future or only past null infinity (and not
both) does notmean that they cover only “half” of the space-time. A similar comment
applies to BMS symmetry, whose definition in terms of space-time relies on a choice
of coordinates that favours future over past null infinity (or vice-versa). Despite this
asymmetry, it was recently realized that (for well-behaved asymptotically flat space-
times [16]) the two definitions of BMScan be related by an “antipodal identification”,
which leads to the application of BMS symmetry to scattering phenomena [17–32].
A related question (as yet unsolved) is whether BMS symmetry can be defined at
spatial infinity [33].

9.1.4 On-Shell BMS3 Metrics

In order for the equations of motion to provide an extremum of the action functional,
the latter must be differentiable in the space of fields satisfying certain fall-off con-
ditions. In the case of asymptotically flat three-dimensional gravity, it was shown in
[34], using the Chern–Simons formalism, that there exists a well-defined variational
principle. The same conclusion was obtained more recently in [35] in the metric
formalism, with the observation that the pure Einstein-Hilbert action (8.1), without
any extra boundary term, is differentiable in the space of asymptotically flat metrics.

Accordingly, it makes sense to ask about the general solution of Einstein’s vacuum
equations in the BMS gauge. It was shown in [10] that this solution reads

ds2 = 8G p(ϕ)du2 − 2dudr + 8G
(
j (ϕ) + up′(ϕ)

)
dudϕ + r2dϕ2 (9.25)

where p(ϕ) and j (ϕ) are arbitrary, 2π-periodic functions of ϕ. Upon evaluating
surface charges we will see that p(ϕ) and j (ϕ) are densities of energy and angular
momentum at null infinity, respectively. As in the earlier AdS3 case (8.38), the nor-
malization factors involving Newton’s constantG are included for later convenience.

The transformation law of the solution (9.25) under the action of asymptotic
Killing vectors follows from the definition

Lξ(X,α)
ds2 ≡ 8G δ(X,α) p(ϕ) du2 + 8G

(
δ(X,α) j (ϕ) + u δ(X,α) p

′(ϕ)
)
dudϕ (9.26)

where the functions X (ϕ) and α(ϕ) determine the vector field (9.17). Evaluating the
Lie derivative (9.26) one finds

http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
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δ(X,α) j = X j ′ + 2X ′ j + αp′ + 2α′ p − c2
12

α′′′, (9.27)

δ(X,α) p = Xp′ + 2X ′ p − c2
12

X ′′′ (9.28)

where c2 is a dimensionful central charge proportional to the Planck mass [9]:

c2 = 3

G
. (9.29)

In this language the asymptotic vector field ξ(X,α) is an exact Killing vector field for
the metric ( j, p) if both variations (9.27) and (9.28) vanish. The subscript “2” in
(9.29) will be justified below.

The transformation law of p in (9.28) coincides with that of a CFT stress tensor
under a conformal transformation generated by X ; it is the coadjoint representation
(6.115) of the Virasoro algebra. The transformation (9.27) of j is somewhat more
involved. We refrain from interpreting these results for now, as we will return to
them in much greater detail in the upcoming sections. Note that at this stage all
normalizations are arbitrary, and in particular the central charge (9.29) would take
another value if we chose to change the normalization of p.

9.1.5 Surface Charges and BMS3 Algebra

Surface Charges

Take an asymptotic Killing vector field (9.17) specified by the functions
(
X (ϕ),

α(ϕ)
)
, and choose an on-shell metric (9.25) specified by

(
j (ϕ), p(ϕ)

)
. We wish to

evaluate the surface charge associated with the symmetry transformation generated
by ξ(X,α) on the background specified by ( j, p). This charge depends linearly on the
components of ξ(X,α), as explained around Eq. (8.9). In addition we must choose a
normalization, that is, a “background” solution for which we declare that all surface
charges vanish. Here we take it to be the null orbifold at j = p = 0,

ḡ = −2dudr + r2dϕ2. (9.30)

With this normalization one can show that the surface charge (8.9) associated with
the vector field ξ(X,α) on the solution ( j, p) is [10]

Q(X,α)[ j, p] = 1

2π

∫ 2π

0
dϕ

[
j (ϕ)X (ϕ) + p(ϕ)α(ϕ)

]
. (9.31)

It can be interpreted as the pairing of the bms3 algebra, consisting of pairs (X,α),
with its dual consisting of pairs ( j, p). In particular, even though we haven’t defined
the BMS3 group at this stage, we already know that the space of solutions (9.25)

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
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belongs to its coadjoint representation. The charge associated with time translations
corresponds to the asymptotic Killing vector ∂u ; it is the Hamiltonian of the system,

M = P0 = 1

2π

∫ 2π

0
dϕ p(ϕ) , (9.32)

and it allows us to interpret p(ϕ) as the energy density carried by the gravitational
field at (future) null infinity. Thus p(ϕ) is the Bondi mass aspect associated with the
metric (9.25) and its zero-mode (9.32) is the Bondi mass. More generally the charges
associated with supertranslations (X = 0) take the form

Q(0,α)[ j, p] = 1

2π

∫ 2π

0
dϕ p(ϕ)α(ϕ) . (9.33)

In the same way, the charge associated with rotations corresponds to the asymptotic
Killing vector ∂ϕ; it is the angular momentum

J = J0 = 1

2π

∫ 2π

0
dϕ j (ϕ) . (9.34)

Wecan interpret j (ϕ) as the density of angularmomentumcarried by the gravitational
field at null infinity; it is the angular momentum aspect associated with the metric
(9.25). More generally all superrotation charges take the form

Q(X,0)[ j, p] = 1

2π

∫ 2π

0
dϕ j (ϕ)X (ϕ)

and generalize centre of mass charges. With this normalization Minkowski space
(9.4) has energy M = −1/8G and all its other surface charges vanish.

Surface Charge Algebra

We now compute the Poisson brackets of surface charges for asymptotically flat
space-times. Recall that these brackets generate symmetry transformations (8.10),
on account of the fact that conserved charges are momentum maps (5.34). We can
apply this property here to deduce the Poisson brackets of charges: if we let ( j, p)
be an on-shell metric (9.25), then the bracket of charges is

{
Q(X,α)[ j, p], Q(Y,β)[ j, p]

} =
(9.31)= − 1

2π

∫ 2π

0
dϕ

[
δ(X,α) j (ϕ)Y (ϕ) + δ(X,α) p(ϕ)β(ϕ)

]
.

(9.35)

Using the infinitesimal transformation laws (9.27) and (9.28) and integrating by parts
one can then show that

http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_5
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{
Q(X,α)[ j, p], Q(Y,β)[ j, p]

} = Q([X,Y ],[X,β]−[Y,α])[ j, p] + c2 [c(X,β) − c(Y,α)] ,
(9.36)

where as in (9.23) we denote by [X,Y ] ≡ XY ′ − Y X ′ the standard Lie bracket
of vector fields on the circle, while c(X,Y ) is the Gelfand–Fuks cocycle (6.43).
Thus, the surface charges of asymptotically flat space-times close under the Poisson
bracket according to a central extension of the BMS3 Lie algebra displayed in (9.23).
Furthermore the central extension is remarkably similar to that of theVirasoro algebra
(6.108). Again, we refrain from interpreting this result any further at this point, since
we haven’t truly defined theBMS3 group yet. For future referencewe simply note that
the Poisson brackets (9.36) can be rewritten in terms of a discrete set of generators
analogous to (9.24). Namely, let us define the charges

Jm ≡ Q(eimϕ,0)[ j, p], Pm ≡ Q(0,eimϕ)[ j, p]

for all m ∈ Z, generalizing the Hamiltonian (9.32) and angular momentum (9.34).
Then the bracket (9.36) yields the algebra

i{Jm,Jn} = (m − n)Jm+n ,

i{Jm,Pn} = (m − n)Pm+n + c2
12

m3δm+n,0 , (9.37)

i{Pm,Pn} = 0 .

This is an infinite-dimensional central extension of (9.10), with m, n ∈ Z.
Note that the central extension proportional to c2 in (9.37) pairs superrotation

generators Jm with supertranslation generators Pm . By contrast the Witt algebra
spanned by superrotations receives no central extension. This is why we wrote the
central charge (9.29) with an index “2”: the notation c1 will be kept for the central
charge pairing superrotation generators with themselves. Despite many similarities,
we stress that c2 is not a Virasoro central charge; in particular it is a dimensionful
quantity. This is consistent with the fact that the value of c2 varies when changing
the normalization of the charges Pm : if we were to define P̃m ≡ λPm with some
non-zero real number λ, the Poisson brackets of J ’s and P̃’s would take the form
(9.37) with the central charge c2 replaced by λc2. Nevertheless, the value displayed
in (9.29) is canonical in the sense that it is the one provided by the normalization
of the Hamiltonian (9.32), which in turn is the surface charge associated with the
vector field ∂u in terms of Bondi coordinates. In essence the central charge c2 is
analogous to that of the Bargmann group (4.103), which as we saw in (4.108) is also
a mass scale. This is radically different from the Virasoro algebra, where the value
of the central charge c in (6.118) is unambiguously fixed by the condition that the
homogeneous structure constants take the form (m − n).

Remark The BMS boundary conditions given here are the flat analogue of Brown–
Henneaux boundary conditions. In this sense they are the “standard” fall-offs for
three-dimensional asymptotically flat gravity. However, it is likely that other con-
sistent boundary conditions exist in Einstein gravity — for instance adapting to flat

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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space the free AdS3 boundary conditions of [36]. In addition one can devise BMS-
like boundary conditions for other theories of gravity, such as topologically massive
gravity [37, 38], bigravity [39], conformal gravity [40] or new massive gravity [41,
42]. In particular, in parity-breaking theories such asTMG, one typically finds that the
Virasoro algebra spanned by superrotations Jm develops a non-zero central charge
c1. Aside from this comment we will have very little to say about these alternative
possibilities.

9.1.6 Zero-Mode Solutions

We focus here on zero-mode metrics, with constant ( j, p) = ( j0, p0) in Eq. (9.25).
The only non-vanishing surface charges for such metrics are the Bondi mass (9.32)
and the angular momentum (9.34), which coincide with p0 and j0 respectively.

At j0 = 0, p0 = −c2/24
(9.29)= −1/8G, the metric is that of pure Minkowski

space-time (9.4). Solutions having p0 = −c2/24 but non-zero j0 corresponding to
“spinning Minkowski space-time”. Note that, while the normalization of p0 and c2
is arbitrary, the relation

pvac = − c2
24

is a normalization-independent statement.3 It suggests that Minkowski space plays
the role of a classical vacuum for a putative dual theory; we will return to this later.

Solutions having 0 > p0 > −c2/24 are conical deficits for all values of j0, with
a deficit angle 2π(1 − 2ω) given by (7.46). In particular, solutions with p0 = 0
are degenerate conical deficits, and the solution p0 = j0 = 0 is the null orbifold
(9.30) that we used to normalize charges. Solutions having p0 < −c2/24 are conical
excesses with an excess angle 2π(2ω−1) given again by (7.46). For p0 = −c2n2/24
the excess angle is 2π(n − 1).

Zero-mode solutions with positive p turn out to describe flat space cosmologies,
sometimes also called shifted boost orbifolds [43, 44]. They represent a (2 + 1)-
dimensional universe that undergoes a big crunch followed by a big bang, where the
transition between the contracting and expanding phases is smooth only if j 	= 0.
When j = 0 these solutions can be thought of as a compactification of the three-
dimensional Milne universe. They can also be seen as limits of the interior region of
BTZ black holes as theAdS3 radius goes to infinity. The lightest flat space cosmology
has p0 = 0 and is separated from Minkowski space-time pvac = −c2/24 by a
classical mass gap; the latter is filled by conical deficits. This is very similar to the
mass gap separating BTZ black holes from AdS3.

Note that, in contrast to AdS3, no cosmic censorship is needed to ensure the
absence of closed time-like curves at infinity (although closed time-like curves

3Indeed, changing the normalization of p would also change the value of the central charge that
ensures that the bracket {J ,P} takes the canonical form in Eq. (9.37).

http://dx.doi.org/10.1007/978-3-319-61878-4_7
http://dx.doi.org/10.1007/978-3-319-61878-4_7
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Fig. 9.1 The zero-mode solutions of asymptotically flat gravity with BMS3 fall-offs. The origin
of the coordinate system (J, M) is the null orbifold (9.30); the Minkowski metric is located below,
on the M axis, right between conical deficits and conical excesses. Flat space cosmologies are
located in the region M > 0. Conical deficits are such that −c2/24 < M < 0 while excesses
have M < −c2/24. Anticipating Sect. 9.3.3, we have shaded the solutions whose orbit has energy
bounded from below under BMS3 transformations; those are all flat space cosmologies and all
conical excesses, plus Minkowski space. Note that this figure is a flat limit of Fig. 8.5, as the slope
of the curve �M = J in the plane (J, M) goes to zero when � → +∞

generally do exist in the bulk). In fact, the whole classification of flat zero-mode
metrics may be seen as a limit � → +∞ of that of zero-mode metrics in AdS3. The
family of flat zero-mode solutions is plotted in Fig. 9.1.

9.2 The BMS3 Group

This section is devoted to a detailed description of the BMS3 group and its central
extension. This will rely on a level of abstraction that may seem offputting at first
sight, but one should keep in mind that BMS3 is an extension of Poincaré symmetry
so that almost all statements on BMS have an analogue in special relativity. We
urge the reader to adopt this point of view whenever there is a risk of getting lost
in mathematical formulas. In particular, our notation will be consistent with the
analogies between Poincaré and BMS3 (Table9.1).

The plan of this section is as follows. Motivated by the structure of the Poincaré
group (4.93), we start by defining a notion of “exceptional semi-direct products”
(generally centrally extended) and work out their adjoint and coadjoint representa-
tions. We then use asymptotic symmetries to motivate the definition of the BMS3
group and its central extension, which turn out to be exceptional semi-direct products

http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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Table 9.1 Symmetry-based objects for the Poincaré group, and their BMS3 analogues

Notation Poincaré BMS3

f Finite Lorentz tsf. Finite superrotation

X Infinitesimal Lorentz tsf. Infinitesimal superrotation

α Translation Supertranslation

jm , Jm , Jm Lorentz generator Superrotation generator

pm , Pm , Pm Translation generator Supertranslation generator

j Relativistic angular
momentum

Angular supermomentum

p Energy-momentum Supermomentum

Z1, c1 / Superrotational central charge

Z2, c2 / Supertranslational central
charge

based on the Virasoro group. Finally, we write down the adjoint representation, the
Lie algebra and the coadjoint representation of the (centrally extended) BMS3 group.
Throughout the section, these structures are compared to their Poincaré counterparts
and to three-dimensional asymptotically flat gravity. Note that the material presented
here relies heavily on Chaps. 2, 4 and 6.

9.2.1 Exceptional Semi-direct Products

Here we study a general family of semi-direct products, whose structure turns out to
be common to the Poincaré group (in three dimensions) and theBMS3 group.We start
by describing this structure and its central extension, then display the corresponding
adjoint and coadjoint representations.

Defining Exceptional Semi-direct Products

Definition Let G be a Lie group with Lie algebra g. The associated exceptional
semi-direct product is the group

G �Ad gAb ≡ G � g (9.38)

where gAb denotes the Lie algebra of G seen as an Abelian vector group acted upon
by G according to the adjoint representation. Its group operation is given by (4.6)
with the action σ replaced by the adjoint.

As usual we denote elements of (9.38) as pairs ( f,α)where f ∈ G is a “rotation”
while α ∈ A is a “translation”. For instance the (double cover of the) Poincaré
group (4.93) takes the exceptional form with G = SL(2, R). It is straightforward to
obtain central extensions of this structure: if Ĝ is a central extension of G with group
operation (2.11) in terms of some two-cocycle C and if ĝ is its Lie algebra, one can
consider the exceptional semi-direct product

http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_2
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Ĝ �Âd ĝAb (9.39)

where Âd denotes the adjoint representation (6.98) of Ĝ. Its elements are quadruples

( f,λ;α,μ) (9.40)

where λ,μ are real numbers, being understood that the pair ( f,λ) belongs to Ĝ
while (α,μ) belongs to ĝAb. The notation emphasizes the fact that “centrally extended
rotations” ( f,λ) play a role radically different from “centrally extended translations”
(α,μ). In fact the notation

(
( f,λ), (α,μ)

)
would be more accurate, but to reduce

clutter we stick to (9.40).
The group operation in (9.39) is that of an exceptional semi-direct product based

on the centrally extended group Ĝ. Explicitly, using the centrally extended adjoint
representation (6.98), we have

( f,λ;α,μ) · (g, ρ;β, ν) =
(6.98)=

(
f · g,λ + ρ + C( f, g) ; α + Ad f β,μ + ν − 1

12
〈S[ f ],β〉

) (9.41)

where C is the two-cocycle that defines Ĝ, S is the associated Souriau one-cocycle
(6.79), and the pairing 〈·, ·〉 is that of g∗ with g. This is exactly the structure that we
will find in the centrally extended BMS3 group below, but for nowwe first investigate
the adjoint and coadjoint representations of (9.39) in general terms.

Adjoint Representation and Lie Algebra

Consider a centrally extended exceptional semi-direct product Ĝ � ĝ. Owing to the
general form (5.103), its Lie algebra is a semi-direct sum

ĝ �âd ĝAb (9.42)

where âd is the adjoint representation of ĝ, i.e. the Lie bracket (6.102). The elements
of this algebra are quadruples (X,λ;α,μ) where (X,λ) belongs to ĝ while (α,μ)

belongs to ĝAb.
The adjoint representation of the group (9.39) follows from formula (5.105).

Starting for simplicity with the centreless group (9.38), it is given by

Ad( f,α)(X,β) = (
Ad f X,Ad f β − adAd f Xα

) =
(
Ad f X,Ad f β − [Ad f X,α]

)

(9.43)

where the “Ad” on the right denotes the adjoint representation of G alone.4 In the
second equality we abuse notation by writing a bracket between Ad f X ∈ g and

4In case of identical notations, the subscript indicates which group we are referring to.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_5
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α ∈ gAb, being understood that we use the Lie bracket of g and interpret the result as
an element of gAb. The Lie bracket of the centreless Lie algebra g �ad gAb follows:

[
(X,α), (Y,β)

] = ([X,Y ], adXβ − adYα
) = ([X,Y ], [X,β] − [Y,α]) , (9.44)

in accordance with the general formula (5.106). Note that this is precisely the form
of the Lie bracket (9.23) of BMS3 asymptotic Killing vectors.

The centrally extended adjoint representation corresponding to (9.43) can be
obtained in a similar fashion. Using (6.98) and (6.102) we find explicitly

Âd( f,α)(X, λ; β, μ) =
=

(
Ad f X, λ − 1

12
〈S[ f ], X〉 ;Ad f β − [Ad f X, α], μ − 1

12
〈S[ f ], β〉 + 1

12

〈
s[Ad f X ], α〉 )

(9.45)

where Ad on the right-hand side denotes the adjoint representation of G and [·, ·]
is the Lie bracket of g. On the left-hand side we have neglected central terms in the
subscript of the adjoint representation, since they act trivially.

From the adjoint representation one can read off, by differentiation, the Lie bracket
of the centrally extended algebra (9.42). One expects the contribution of central terms
to include a cocycle c given by (6.101), and indeed one finds

[
(X,λ;α,μ), (Y, ρ;β, ν)

] =
(
[X,Y ], c(X,Y ); [X,β]−[Y,α], c(X,β)−c(Y,α)

)

(9.46)

where we abuse notation as in (9.44). Already note that the last entry precisely takes
the form of the central extension in the Poisson bracket (9.36) of flat surface charges.

The appearance of the same cocycle c in both central entries of (9.46) is due to the
exceptional semi-direct product structure of (9.39). It implies that, when written in
terms of generators, the brackets of rotations with translations take the same form as
the brackets of rotationswith themselves, including central terms. Explicitly, suppose
we are given a basis of ĝ � ĝAb consisting of non-central generators

Ja ≡ ( ja, 0; 0, 0) , Pa ≡ (0, 0; pa, 0)

where the ja’s and pa’s respectively generate g and gAb, together with two central
elements

Z1 ≡ (0, 1; 0, 0) , Z2 ≡ (0, 0; 0, 1) . (9.47)

Suppose also that the Lie brackets of Ja’s take the form (2.27) with some structure
constants fabc and some central coefficients cab, and let us choose the basis elements
Pa such that their bracket with Ja’s takes the same form as the bracket of Ja’s with
themselves. This is allowed by the exceptional semi-direct product structure. Then
the bracket (9.46) implies that the commutation relations of ĝ � ĝAb are

http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_2
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[Ja,Jb] = fab
c Jc + cab Z1 ,

[Ja,Pb] = fab
c Pc + cab Z2 , (9.48)

[Pa,Pb] = 0 .

The fact that J ’s act on P’s according to the adjoint representation is now manifest
since the structure constants of the two first lines are identical. Note in particular
that the central generator Z1 pairs rotations with themselves, while Z2 pairs rota-
tions with translations. The centrally extended BMS3 algebra (9.37) illustrates this
phenomenon, as does the Poincaré algebra (9.10), albeit without central extension.

Note that the definition of (9.39) rules out all central extensions in the bracket
[P,P] of (9.48), and indeed we will show in Sect. 9.2.5 that such central extensions
never take place in the centrally extended BMS3 algebra. However, for other semi-
direct product groups, such extensions may occur; an example is the symmetry group
of warped conformal field theories [45], Diff(S1) � C∞(S1).

Coadjoint Representation

The space of coadjoint vectors dual to the algebra (9.42) is a direct sum ĝ∗ ⊕ ĝ∗,
or more accurately ĝ∗ ⊕ ĝ∗

Ab. Following the notation of Sect. 5.4, its elements are
quadruples

( j, c1; p, c2) (9.49)

where ( j, c1) is a centrally extended angular momentum dual to ĝ, while (p, c2)
is a centrally extended momentum dual to ĝAb. The real numbers c1, c2 are central
charges; the first pairs rotation generators with themselves, while the second pairs
rotations with translations. The pairing of (9.49) with ĝ � ĝAb is

〈
( j, c1; p, c2), (X,λ;α,μ)

〉 = 〈 j, X〉 + 〈p,α〉 + c1λ + c2μ , (9.50)

where the two pairings 〈·, ·〉 on the right-hand side are those of g∗ with g and g∗
Ab

with gAb, respectively. This is a centrally extended generalization of (5.109).
Recall that the coadjoint representation of a semi-direct product involves a cross

product (5.110). For the centreless exceptional semi-direct product (9.38), we have

〈α × p, X〉 (5.110)= 〈p, adXα〉 = − 〈p, adαX〉 (5.11)= 〈
ad∗

α p, X
〉

where ad and ad∗ denote the adjoint and coadjoint representations of g, respectively.
In other words,

α × p = ad∗
α p (9.51)

where we abuse notation slightly by acting with an element of gAb on an element
of g∗

Ab. Using (5.113), it readily follows that the coadjoint representation of the
centreless semi-direct product (9.38) is given by

Ad∗
( f,α)( j, p) = (

Ad∗
f j,+ad∗

αAd
∗
f p,Ad

∗
f p

)
(9.52)

http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_5
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where the Ad∗ on the right-hand side is the coadjoint representation of G. For exam-
ple, when G = SL(2, R), this formula is the transformation law of relativistic angu-
lar momentum j and energy-momentum p under Poincaré transformations in three
dimensions. From (9.52) we also find that the coadjoint representation of the Lie
algebra g � gAb is

ad∗
(X,α)( j, p) = (

ad∗
X j + ad∗

α p, ad
∗
X p

)
(9.53)

in accordance with Eq. (5.114).
The centrally extended generalization of these considerations is straightforward,

if mildly technical. Using Eq. (6.104) for the coadjoint action of Ĝ, formula (9.52)
yields the coadjoint representation of Ĝ � ĝAb:

Âd
∗
( f,α)( j, c1; p, c2) =

=
(
Ad∗

f j − c1
12

S[ f −1] + ad∗
α

[
Ad∗

f p − c2
12

S[ f −1]
]

+ c2
12

s[α], c1;Ad∗
f p − c2

12
S[ f −1], c2

)
.

(9.54)

Here it is understood that all Ad∗’s and ad∗’s on the right-hand side are centreless—
they are the coadjoint representations of G and g, respectively.

Formula (9.54) looks a bit scary but it is crucial for our purposes, so let us briefly
point out twoof its important features. First, the central charges c1, c2 are left invariant
by the action of the group, as expected. Second, note that the transformation law of
momentum is

f · p = Ad∗
f p − c2

12
S[ f −1] , (9.55)

where the Ad∗ on the right-hand side is that of G (not Ĝ). This formula says that p
is invariant under translations (since it is unaffected by α) and that its transformation
law is blind to the central charge c1, but not to c2. In fact, Eq. (9.55) is the coadjoint
representation (6.104) of the centrally extended group Ĝ at central charge c2. As
a corollary we can already conclude that the orbits of momenta labelling unitary
representations of (9.39) are coadjoint orbits of the group Ĝ at fixed central charge
c2; there is no need to master the much more complicated transformation law of
angular momentum in (9.54) in order to classify such representations. This will have
key consequences for the BMS3 group below.

Remark Property (9.51) explains why we refer to the map (5.110) as a cross prod-
uct. Indeed, the (double cover of the) Euclidean group in three dimensions is an
exceptional semi-direct product SU(2) �Ad su(2)Ab. Since the coadjoint represen-
tation of SU(2) is equivalent to the adjoint, one may identify vectors with cov-
ectors and the cross product (9.51) for the Euclidean group can be rewritten as
α × p = adα p = [α, p]. Here the Lie bracket is that of su(2), so in components
one has (α × p)i = εi jkα

j pk , which is the standard definition of the cross product
in mechanics.

http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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9.2.2 Defining BMS3

Now that we are acquainted with exceptional semi-direct products, let us show how
this structure occurs in three-dimensional BMS symmetry.

Centerless BMS3 Group

Our first task is to move backwards from the centreless BMS3 algebra (9.23) to the
corresponding group. The algebra consists of pairs

(
X (ϕ),α(ϕ)

)
, where X (ϕ)∂ϕ

is a vector field on the circle while α(ϕ) is a priori just a function on the celestial
circle. These two quantities were referred to above as infinitesimal superrotations
and supertranslations, respectively. Together, they generate finite transformations
(9.12) of the cylinder at null infinity, where f (ϕ) is a diffeomorphism of the circle.
Thus we already know that the BMS3 group consists of pairs ( f,α), where f is a
diffeomorphism of the circle while α is a function. It only remains to work out the
group operation; the latter is given by the composition of two transformations (9.12):

(u,ϕ)
(g,β)�−→ (

g′(ϕ)u + β(g(ϕ)), g(ϕ)
)

( f,α)�−→
(
f ′(g(ϕ))

[
g′(ϕ)u + β(g(ϕ))

] + α
(
f (g(ϕ))

)
, f (g(ϕ))

)
.

Here the last result on the right-hand side can be rewritten as

(
( f ◦ g)′(ϕ)u + [α + Ad f β]

∣
∣
∣
( f ◦g)(ϕ)

, ( f ◦ g)(ϕ)
)

(9.56)

where Ad f β denotes the adjoint representation (6.17) of Diff(S1) acting on β, that
is, the transformation law of a vector field β(ϕ)∂ϕ under f (ϕ):

(Ad f β)
∣
∣
f (ϕ)

= f ′(ϕ)β(ϕ). (9.57)

Expression (9.56) indicates three things:

1. The group operation of superrotations is given by composition (6.8); hence finite
(as opposed to infinitesimal) superrotations span a group Diff(S1).5

2. If it wasn’t for superrotations, the group operation of supertranslations would just
be addition,α ·β ≡ α+β. Thus supertranslations span an Abelian additive group
whose elements are certain functions on the circle.

3. The action of superrotations on supertranslations is that of diffeomorphisms on
vector fields, i.e. it is the adjoint representation (9.57) of Diff(S1). In partic-
ular, supertranslations, which so far we thought of as functions α(ϕ) on the
circle, should better be seen as vector fields α(ϕ)∂ϕ. The only subtlety is that
these vector fields do not generate diffeomorphisms of celestial circles, but rather

5As in Chap.6 we describe diffeomorphisms of the circle by their lifts belonging to the universal
cover˜Diff+(S1), which we abusively denote simply as Diff(S1).

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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angle-dependent translations (9.11) of retarded time u. Equivalently, each super-
translation is a density α = α(ϕ)(dϕ)−1 on the circle.

These observations motivate the following definition:

Definition The centreless BMS group in three dimensions is the exceptional semi-
direct product

BMS3 ≡ Diff(S1) �Ad Vect(S
1)Ab (9.58)

where Diff(S1) is the group of diffeomorphisms of the circle while Vect(S1)Ab is its
Lie algebra, seen as an Abelian vector group acted upon by Diff(S1) according to
the adjoint representation. Its elements are pairs ( f,α); its group operation follows
from the general definition (4.6) and is given by

( f,α) · (g,β) = (
f ◦ g,α + Ad f β

)
(9.59)

where Ad is the action (9.57) of Diff(S1) on vector fields. With this definition the
action (9.12) of BMS3 on null infinity reproduces the group operation (9.59).

The BMS3 group is infinite-dimensional and has the announced form (9.38), with
G = Diff(S1). Sincewe saw in Sect. 6.1 that PSL(2, R) is a subgroup of Diff(S1), the
Poincaré group is obviously a subgroup of BMS3. We therefore introduce officially
the following terminology:

Definition In the BMS3 group (9.58), elements of Diff(S1) are known as superrota-
tions while elements of Vect(S1)Ab are called supertranslations.

Remark The name “superrotation” has come to be standard, but the geometric inter-
pretation of Diff(S1) makes the terminology “superboosts” somewhat more appro-
priate. Indeed, recall from Sect. 6.1 that the group Diff(S1) is homotopic to a circle,
so that the only superrotations spanning a compact group are those conjugate to rigid
rotations f (ϕ) = ϕ + θ. The other one-parameter subgroups of Diff(S1) are all
non-compact and should be seen as boost groups.

Universal Cover of BMS3

As in Sect. 6.1 we should be careful about what we mean by Diff(S1). Strictly speak-
ing, Diff(S1) consists of all diffeomorphisms of the circle with the composition law
(6.2); its connected subgroupDiff+(S1) consists of orientation-preserving diffeomor-
phisms. Since the group of supertranslations is a vector space, it is also connected
and we define the connected BMS3 group as

BMS+
3 ≡ Diff+(S1) �Ad Vect(S

1)Ab . (9.60)

If we think of the group of superrotations as an extension of the Lorentz group in three
dimensions, then Diff(S1) corresponds to the disconnected orthochronous Lorentz
group O(2, 1)↑ while Diff+(S1) corresponds to the connected (orthochronous and

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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proper) Lorentz group SO(2, 1)↑. It appears that no Diff(S1) transformation corre-
sponds to time reversal (which sounds reasonable since BMS symmetry is defined
separately at future and past null infinity).

The group Diff+(S1) of orientation-preserving superrotations is homotopic to a
circle, so it admits topological projective transformations that can be dealt with by
trading it for its universal cover, D̃iff+(S1). Since the vector group of supertransla-
tions is homotopic to a point, the BMS3 group has the homotopy type of a circle.

Definition The universal cover of the BMS group in three dimensions is the excep-
tional semi-direct product

B̃MS+
3 ≡ D̃iff+(S1) �Ad Vect(S

1)Ab (9.61)

where D̃iff+(S1) is the universal cover of the connected groupDiff+(S1) and consists
of 2πZ-equivariant superrotations (6.7).

In particular, exact representations of B̃MS+
3 generally correspond to projective

representations of BMS+
3 . The groups BMS3, BMS+

3 and B̃MS+
3 are well-defined

infinite-dimensional Lie-Fréchet groups. In what follows, motivated by quantum-
mechanical applications,we always focus (implicitly) on the universal cover.Accord-
ingly we abuse notation and denote the universal cover simply by BMS3, neglecting
the superscript “+” and the tilde.

Centrally Extended BMS3 Group

In order to define the central extension of BMS3, we apply the prescription (9.39)
for centrally extended exceptional semi-direct products to the case G = Diff(S1):

Definition The centrally extended BMS group in three dimensions is the exceptional
semi-direct product

B̂MS3 ≡ D̂iff(S1) �Âd V̂ect(S
1) (9.62)

where D̂iff(S1) is the (universal cover of the) Virasoro group.
Since this thesis is concerned with the group B̂MS3, let us make its definition a bit

more explicit before going further. The elements of B̂MS3 are quadruples
(
f,λ;α,μ

)

where f is a superrotation,α a supertranslation, while λ,μ are real numbers, extend-
ing Poincaré transformations as before. In B̂MS3, centrally extended superrotations
( f,λ) span aVirasoro groupwhile extended supertranslations (α,μ) span an infinite-
dimensional Abelian group acted upon by superrotations according to the Virasoro
adjoint representation. Explicitly, the group operation in B̂MS3 takes the form (9.41)
where f · g = f ◦ g, while C is the Bott-Thurston cocycle (6.69) and S is the
Schwarzian derivative (6.76). The pairing 〈·, ·〉 is that of Vect(S1) with its dual,
given by (6.34).

The centreless BMS3 group (9.58) is perfect, in the same way as Diff(S1); this
implies that it admits a universal central extension. As it turns out, this is precisely
achieved by B̂MS3 (see Sect. 9.2.5 for the proof):

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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Theorem The centrally extended BMS3 group (9.62) is the universal central exten-
sion of the centreless BMS3 group (9.58).

9.2.3 Adjoint Representation and bms3 Algebra

Lie Algebra

Since BMS3 is an exceptional semi-direct product, its centreless Lie algebra takes
the form g � gAb, where g is the Lie algebra of Diff(S1):

bms3 = Vect(S1) �ad Vect(S
1)Ab . (9.63)

Its elements are pairs (X,α) where X = X (ϕ)∂ϕ is an infinitesimal superrotation
and α = α(ϕ)(dϕ)−1 an infinitesimal supertranslation. These functions determine
the components of vector fields (9.17) generating asymptotic symmetries, so that
elements of bms3 can be seen as infinitesimal BMS3 transformations. In particular
the Poincaré subalgebra of bms3 consists of pairs (X,α) whose only non-vanishing
Fourier modes are the three lowest ones, as in (9.7)–(9.9). The centrally extended
generalization (9.42) of this definition is immediate:

Definition The Lie algebra of B̂MS3 is an exceptional semi-direct sum

b̂ms3 ≡ V̂ect(S1) �âd V̂ect(S
1)Ab . (9.64)

Its elements are quadruples (X,λ;α,μ) where X = X (ϕ)∂ϕ is an infinitesimal
superrotation, α = α(ϕ)(dϕ)−1 an infinitesimal supertranslation, while λ,μ are real
numbers.

Adjoint Representation

The adjoint representation of the centreless BMS3 group is given by formula (9.43),
where the adjoint action of Diff(S1) is the transformation law of vector fields (6.18).
An important subtlety is that the Lie bracket appearing on the right-hand side is that
of the Lie algebra of Diff(S1) and is therefore the opposite (6.21) of the standard
bracket of vector fields. Accordingly, in terms of the usual Lie bracket of vector fields
on the circle one would write the adjoint representation of BMS3 as

Ad( f,α)(X,β) = (
Ad f X,Ad f β + [Ad f X,α]) , (9.65)

with a plus sign instead of a minus sign in the second entry of (9.43). The centrally
extended generalization of that expression is provided by Eq. (9.45), where S is the
Schwarzian derivative (6.76), s is its infinitesimal version (6.74), and 〈·, ·〉 is the
standard pairing (6.34). Again, when writing the adjoint representation in terms of
the standard Lie bracket of vector fields, the sign in front of the bracket of the third

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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entry of (9.45) is a plus instead of a minus. Since we will not explicitly need the
adjoint representation of the B̂MS3 group, we do not display it here.

Lie Brackets

From the adjoint representation one can read off the Lie bracket of the b̂ms3 algebra.
In order to absorb the minus sign of (6.21) we define the bracket to be

[
(X,λ;α,μ), (Y, ρ;β, ν)

] ≡ − d

dt
Âd(et X ,tα)(Y, ρ;β, ν)

∣
∣
t=0 .

With this definition the Lie bracket in b̂ms3 takes the form (9.46) where the brackets
on the right-hand side are standardLie brackets of vector fieldswhilec is theGelfand–
Fuks cocycle (6.43). This is consistent with the algebra of surface charges (9.36).

The Lie algebra structure can be made more apparent by writing the bracket
(9.46) in a suitable basis. As in (9.24) we define the complex superrotation and
supertranslation generators of the centreless bms3 algebra,

jm ≡ (
eimϕ∂ϕ, 0

)
, pm ≡ (

0, eimϕ(dϕ)−1
)
, (9.66)

where the index m runs over all integers. Their brackets take the form (9.10). The
corresponding basis of the centrally extended b̂ms3 algebra is

Jm ≡ (
jm, 0; 0, 0)(9.66)= (

eimϕ∂ϕ, 0; 0, 0) ,

Pm ≡ (
0, 0; pm, 0

)(9.66)= (
0, 0; eimϕ(dϕ)−1, 0

)
,

(9.67)

togetherwith two central elements (9.47), i.e.Z1 = (0, 1; 0, 0) andZ2 = (0, 0; 0, 1).
In these terms the centrally extended bracket (9.46) yields

i[Jm,Jn] = (m − n)Jm+n + Z1

12
m3δm+n,0 ,

i[Jm,Pn] = (m − n)Pm+n + Z2

12
m3δm+n,0 , (9.68)

i[Pm,Pn] = 0 .

Up to central terms this is of the same formas the asymptotic symmetry algebra (9.10),
and it is consistent with the general form (9.48) for centrally extended exceptional
semi-direct products. In the first line we see that superrotations close according to
a Virasoro algebra (6.110) with central generator Z1, while the second line shows
that brackets of superrotations with supertranslations take the Virasoro form with a
different central element Z2. The algebra of surface charges (9.37) takes that form,
with definite values c1 = 0, c2 = 3/G for the central generators Z1, Z2.

Remark The canonical Poincaré subgroup of BMS3 is the one spanned by super-
rotations (6.88) and supertranslations (9.7), or equivalently the one generated by

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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basis elements jm, pm with m = −1, 0, 1. But in fact, BMS3 admits infinitely many
other Poincaré subgroups: each of them has a Lie algebra spanned by jn, j0, j−n and
pn, p0, p−n , consisting of superrotations of the form (6.95) and supertranslations

α(ϕ) = α0 − α1 cos(nϕ) − α2 sin(nϕ)

whose only non-vanishing Fourier modes are the zero-mode and the nth modes.

9.2.4 Coadjoint Representation

Angular and Linear Supermomentum

The coadjoint vectors of B̂MS3 are quadruples
(
j, c1; p, c2

)
where j = j (ϕ)dϕ2 and

p = p(ϕ)dϕ2 are quadratic densities on the circle, respectively dual to infinitesimal
superrotations and supertranslations. The coefficients c1 and c2 are central charges.
The pairing of ( j, c1; p, c2) with the Lie algebra b̂ms3 is given by formula (9.50), or
explicitly

〈
( j, c1; p, c2), (X,λ,α,μ)

〉 = 1

2π

∫ 2π

0
dϕ

[
j (ϕ)X (ϕ) + p(ϕ)α(ϕ)

] + c1λ + c2μ .

The right-hand side of this expression coincides (up to central terms) with the surface
charge (9.31). Inspired by the terminology of superrotations and supertranslations,
we introduce the following nomenclature:

Definition Let ( j, p) be a coadjoint vector for the BMS3 group. Then p = p(ϕ)dϕ2

is called a supermomentum while j = j (ϕ)dϕ2 is an angular supermomentum.
The embedding of the Poincaré algebra in bms3 suggests an interpretation for the

lowest Fourier modes of

j (ϕ) =
∑

m∈Z

jme
−imϕ and p(ϕ) =

∑

m∈Z

pme
−imϕ. (9.69)

Indeed, p0 is dual to time translations and should be interpreted as the energy asso-
ciated with p(ϕ); similarly, the components p1 and p−1 = p∗

1 are complex linear
combinations of the spatial components of momentum. As for j0, it is the angular
momentum associated with j (ϕ), while j1 and j−1 are centre of mass charges. More
generally, the function p(ϕ) should be seen as an energy density on the circle —
essentially a stress tensor — while j (ϕ) is an angular momentum density on the cir-
cle. In particular, it is natural to give dimensions of energy to the function p(ϕ) and
the central charge c2, while the function j (ϕ) and the central charge c1 are dimen-
sionless. This interpretation is confirmed by the surface charges (9.31), since p(ϕ)

is a Bondi mass aspect while j (ϕ) is an angular momentum aspect; furthermore the
central charge (9.29) is indeed a mass scale.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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RemarkTo our knowledge the terminology of “supermomentum” for duals of super-
translations dates back to [46], and has subsequently been used throughout the BMS
literature (see e.g. [47–51]). The terminology of “angular supermomentum”, on the
other hand, seems to have first appeared in [52, 53] in relation to the problem of
angular momentum, but apparently without direct relation to BMS symmetry. It was
later independently introduced in [8] in the BMS context. In [51], angular supermo-
mentum is referred to as “super centre of mass”.

Coadjoint Representation

As in the Virasoro case, one should think of the pair ( j, p) as the stress tensor
of a BMS3-invariant theory; its transformations under BMS3 then coincide with
the coadjoint representation, given for centrally extended exceptional semi-direct
products by formula (9.54). In that expression, the central charges are invariant (as
they should) while the transformation law of supermomentum coincides with the
coadjoint representation (6.114) of the Virasoro group at central charge c2:

(
f · p)( f (ϕ)

) = 1
(
f ′(ϕ)

)2

[
p(ϕ) + c2

12
S[ f ](ϕ)

]
, (9.70)

where S denotes the Schwarzian derivative (6.76). We stress once more that super-
momentum is left invariant by supertranslations, as it should.

The transformation law of angular supermomentum is a bit more involved and
translates the fact that j is sensitive both to superrotations and to supertranslations, as
it should since angularmomentumand centre ofmass charges are always definedwith
respect to an arbitrarily chosen origin.We refrain from describing this transformation
law any further at this point, as we shall return to it in Sect. 9.3.1 when showing that
the phase space of metrics (9.25) is a hyperplane at central charges c1 = 0, c2 = 3/G
embedded in the coadjoint representation of B̂MS3.

Kirillov–Kostant Bracket

A prerequisite for showing that the asymptotically flat phase space is a coadjoint rep-
resentation is to understand the Kirillov–Kostant Poisson bracket of the asymptotic
symmetry group. Let us do this here for B̂MS3; we proceed as in Sect. 6.4. Thus let{J ∗

m,P∗
m,Z∗

1 ,Z∗
2

}
be the dual basis corresponding to (9.67) and (9.47). Writing any

coadjoint vector as

(
j (ϕ)dϕ2, c1; p(ϕ)dϕ2, c2

) =
∑

m∈Z

(
jmJ ∗

m + pmP∗
m

) + c1Z∗
1 + c2Z∗

2 ,

the components { jm, pm, c1, c2} are global coordinates on the dual space b̂ms3
∗.

Their Poisson brackets (5.28) take the form

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_5
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i{ jm, jn} = (m − n) jm+n + c1
12

m3δm+n,0 ,

i{ jm, pn} = (m − n)pm+n + c2
12

m3δm+n,0 , (9.71)

i{pm, pn} = 0 .

As is obvious here, c1 is a genuine Virasoro central charge for superrotations, while
c2 is the (generally dimensionful) central charge pairing superrotations with super-
translations. The surface charges of asymptotically flat gravity satisfy the exact same
algebra (9.37), with the values of central charges c1 = 0, c2 = 3/G. We will return
to this in Sect. 9.3.

9.2.5 Some Cohomology*

To conclude our abstract description of BMS3 symmetry, we now show that the
centrally extended group (9.62) is in fact the universal central extension of the BMS3
group (9.58). (In both casesDiff(S1) is understood to denote the universal cover of the
group of orientation-preserving diffeomorphisms of the circle.) We use the notation
of Sect. 2.2. Since the proof is very similar to the construction of the Gelfand–Fuks
cocycle (6.43), this section may be skipped in a first reading.

The bms3 algebra is perfect: it is equal to its Lie bracket with itself. This can
be seen, for instance, by noting that the right-hand sides of the brackets (9.10) span
all possible bms3 generators. Accordingly it follows from (2.19) that the first real
cohomologyofbms3 vanishes:H1(bms3) = 0. Since the same is true of the centreless
BMS3 group, its central extension is universal, and it only remains to establish the
second cohomology of bms3.

Theorem The second real cohomology space of bms3 is two-dimensional. It is
generated by the classes of the two-cocycles

c1
(
(X,α), (Y,β)

) = c(X,Y ) and c2
(
(X,α), (Y,β)

) = c(X,β) − c(Y,α)

(9.72)

where c is the Gelfand–Fuks cocycle (6.43). Their expression in the basis (9.66) is

c1( jm, jn) = c2( jm, pn) = −i
m3

12
δm+n,0 , (9.73)

while their other components vanish. As a consequence, the Lie algebra (9.64) is the
universal central extension of (9.63), and the group (9.62) is the universal central
extension of (9.58).

Proof The fact that the cocycle c1 is the only non-trivial cocycle pairing superrotation
generators with themselves follows from the fact that infinitesimal superrotations
span a Witt subalgebra of bms3. The considerations of Sect. 6.2 then carry over

http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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directly to bms3. Now let us ask whether there exists a two-cocycle c such that
c(pm, pn) 	= 0. The cocycle identity (2.21) with trivial T implies

c( j0, [pm, pn]) + c̃(pm, [pn, j0]) + c̃(pn, [ j0, pm]) = (m + n)c̃(pm, pn)
!= 0 ,

where we used the Lie brackets (9.10). This yields c̃(pm, pn) = c̃mδm+n,0 where the
coefficients c̃m = −c̃−m are to be determined. We now attempt to find a recursion
relation for these coefficients; using the cocycle identity

c(p−1, [ j−m+1, pm]) + c( j−m+1, [pm, p−1]) + c(pm, [p−1, j−m+1]) = 0 ,

the bms3 algebra (9.10) implies (2m−1)c̃1+ (m−2)c̃m = 0. Since this must be true
for all integer values ofm we conclude that c̃1 = 0, which in turn implies c̃m = 0 for
all m ∈ Z. Thus, any two-cocycle on the bms3 algebra has vanishing components
c̃(pm, pn) = 0. Finally, suppose that c is a two-cocycle on the bms3 algebra and let
us ask whether one can have c( jm, pn) 	= 0. As in (6.46) we start by ensuring that
the cocycle c is rotation-invariant by adding to it a suitable coboundary. Consider
therefore the cocycle relation

c( j0, [ jm, pn]) = c([ j0, jm], pn) + c( jm, [ j0, pn]) .

The left-hand side canbe interpreted as the differential of the one-cochaink = c( j0, ·)
evaluated at ( jm, pn), while the right-hand side is the Lie derivative of cwith respect
to j0. Since the left-hand side is exact we know that the cohomology class of c is
left invariant by rotations; in particular we can add to c the differential db of the
one-cochain

b( jm) ≡ 0 , b(pm) ≡ i

m
c( j0, pm) ,

which is such that
L j0(c + db)( jm, pn) = 0 . (9.74)

From now on we simply write c to denote c + db. Then, analogously to (6.50),
Eq. (9.74) implies (m+n)c( jm, pn) = 0 by virtue of the brackets (9.10). In particular
we can now write c( jm, pn) = cmδm+n,0 and it only remains to find the coefficients
cm . For this we derive a recursion relation using the cocycle identity

c(p1, [ j−m−1, jm]) + c( j−m−1, [ jm, p1]) + c( jm, [p1, j−m−1]) = 0 ,

which implies

(2m + 1)c−1 + (m − 1)c−m−1 + (m + 2)cm = 0 (9.75)

by virtue of the bms3 algebra (9.10). In particular we have c0 = 0 and c1 = −c−1,
which then gives cm = −c−m and the recursion relation (9.75) can be rewritten as

http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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cm+1 = (m + 2)cm − (2m + 1)c1
m − 1

.

This is the same relation as in theVirasoro case, Eq. (6.52). In particular it is solved by
cm = m and cm = m3, the former being a coboundary. The result (9.73) follows. �

9.3 The BMS3 Phase Space

As explained in Sect. 8.3, the space of solutions of a Hamiltonian system coincides
with its phase space. Accordingly the on-shell metrics (9.25) span the phase space
of asymptotically flat gravity in three dimensions. Here we show that this space is
a hyperplane at fixed central charges c1 = 0, c2 = 3/G embedded in the coadjoint
representation of the B̂MS3 group. We also discuss this result from a holographic
perspective and derive a positive energy theorem.

9.3.1 Phase Space as a Coadjoint Representation

The space of on-shell metrics (9.25) is spanned by pairs ( j, p) transforming under
BMS3 according to (9.27)–(9.28). We now show that these formulas coincide with
the coadjoint representation of the b̂ms3 algebra at central charges c1 = 0, c2 = 3/G.
This is trivially true for the transformation law of p(ϕ) since (9.28) coincides with
the coadjoint representation (6.115) of theVirasoro algebra, which in turn is the infin-
itesimal version of the transformation law (9.70). As pointed out in Sect. 9.2.4, the
case of the angular momentum aspect is more intricate since its coadjoint transfor-
mation law is the first entry on the right-hand side of (9.54). When applied to BMS3,
the latter formula must be modified slightly to match our conventions for Diff(S1).
Namely, due to the minus sign of the Lie bracket (6.21), the ad∗ of Eq. (9.54) should
be replaced by −ad∗. Taking this subtlety into account, the transformation law of
angular supermomentum is

( f,α) · j = Ad∗
f j − c1

12
S[ f −1] − ad∗

α

[
Ad∗

f p − c2
12

S[ f −1]
]

+ c2
12

s[α] . (9.76)

HereAd∗ denotes the coadjoint representation (6.36) ofDiff(S1),S is the Schwarzian
derivative (6.76), s is its infinitesimal cousin (6.74), and ad∗ is the infinitesimal coad-
joint representation (6.37) so that ad∗

α p = αp′ + 2α′ p. In order to relate formula
(9.76) to the transformation law of the angular momentum aspect, we take an infin-
itesimal superrotation f (ϕ) = ϕ + εX (ϕ), an infinitesimal supertranslation ε α(ϕ),
and define the variation of j by

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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δ(X,α) j ≡ − ( f, ε α) · j − j

ε
.

As a result we obtain

δ(X,α) j = X j ′ + 2X ′ j − c1
12

X ′′′ + αp′ + 2α′ p − c2
12

α′′′,

which exactly coincides with (9.27) when c1 = 0, as expected.
Using the fact that the Poisson algebra of surface charges (9.37) coincides with

the Kirillov–Kostant bracket (9.71), we conclude that the (covariant) phase space
of three-dimensional asymptotically flat gravity with BMS boundary conditions is a
hyperplane c1 = 0, c2 = 3/G embedded in the space of the coadjoint representation
of the B̂MS3 group and endowed with its Kirillov–Kostant Poisson bracket. This
observation is the flat space analogue of the statement that the subleading compo-
nents of an AdS space-timemetric contain one-point functions of the dual CFT stress
tensor. As in AdS, this observation should not come as a surprise. Indeed, the coad-
joint representation of BMS3 was bound to appear in the transformation law of the
momentum map of the system, and it just so happens that this map is determined by
the entries of the metric (9.25). The truly surprising aspect of this observation is the
fact that it is the entries of the metric, and not some non-linear combinations thereof,
that determine the momentum map. In particular, as in AdS3, the set of solutions
(9.25) is a vector space.

In view of these results, one may ask whether the subleading components of
asymptotically flat metrics can be interpreted as the components of the stress tensor
of some dual theory, similarly to AdS/CFT. The notion of “dual theory” appears to be
elusive in the asymptotically flat case, essentially because themetric becomes degen-
erate at null infinity, but the question can be answered regardless of this complication.
Indeed, whatever the dual theory is, it must be such that its stress tensor transforms
under the coadjoint representation of the BMS3 group (generally with some non-zero
central charges), by virtue of the very nature of momentum maps. Accordingly, the
stress tensor T of any BMS3-invariant theory is necessarily such that Tuu = p(ϕ)

is a supermomentum generating supertranslations, while Tuϕ = j (ϕ) is an angular
supermomentum generating superrotations.

This being said, it would be reassuring to have explicit field-theoretic illustrations
of the fact that ( j, p) actually is the stress tensor of some two-dimensional field theory.
Such an illustration is provided by [34] (see also [54]), where a two-dimensional field
theory invariant under BMS3 was obtained thanks to the “dimensional reduction” of
three-dimensional gravity through the Chern–Simons formalism. As expected, the
stress tensor of that theory is a pair ( j, p) that coincides with the functions speci-
fying the metric (9.25), and whose BMS3 transformations exactly take the form of
the coadjoint representation (9.54) with central charges c1 = 0, c2 = 3/G [55]. The
higher-spin [56] and supersymmetric [57, 58] generalizations of these considera-
tions confirm this statement, so known examples of BMS3-invariant field theories do
support our claim that the functions ( j, p) coincide with the components of a “dual”
stress tensor.
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9.3.2 Boundary Gravitons and BMS3 Orbits

If one picks a metric (9.25) at random, the pair
(
j (ϕ), p(ϕ)

)
is most likely to consist

of functions that are not constant on the circle. This is actually implied by BMS3
symmetry: if we let ( j, p) be any seed solution (with j, p constant or not), the
set of metrics obtained from it by asymptotic symmetry transformations spans an
infinite-dimensional coadjoint orbit of the B̂MS3 group at central charges c1 = 0,
c2 = 3/G,

W( j,c1;p,c2) . (9.77)

The metrics belonging to this orbit are infinite-dimensional analogues of Poincaré
transforms of the state of a particle with momentum p and angular momentum j .
As in Sect. 8.3 one may refer to the orbit (9.77) as a space of classical “boundary
gravitons” around the background ( j, p).

The fact that the phase space of flat gravity coincides with (a hyperplane in) the
coadjoint representation of B̂MS3 allows us to use the orbits (9.77) as an organizing
principle. As in Fig. 8.6, the space of solutions is foliated into disjoint B̂MS3 orbits,
each of which is a symplectic manifold. Since the classification of coadjoint orbits of
B̂MS3 follows from the results of Sect. 5.4, wemay claim to control the full covariant
phase space of asymptoticallyflat gravity. In particular the classificationof zero-mode
solutions in Fig. 9.1 is a first step towards the full classification: each point in the plane
(J, M) determines an orbit (9.77), and different points define disjoint orbits. Since
not all orbits have constant representatives, Fig. 9.1 is an incomplete representation
of the full phase space of the system. The complete picture would involve the BMS3
analogue of Fig. 7.3. Note that the relation between metrics and B̂MS3 orbits hints
that the quantization of asymptotically flat gravity produces unitary representations
of BMS3. We will investigate this proposal in Chaps. 10 and 11.

9.3.3 Positive Energy Theorem

Positive energy theorems in general relativity are commonly formulated in asymp-
totically flat space-times, so we are now in position to address the three-dimensional
version of that problem. The question that we wish to ask is the following: which
asymptotically flat metrics (9.25) have energy bounded from below under BMS3
transformations?

The answer follows from the fact that asymptotically flat metrics transform under
BMS3 according to the coadjoint representation (9.54). For our purposes the key
property of that formula is the fact that the transformation law of p is blind to
supertranslations. In this sense the positive energy theorem in three-dimensional flat
space is even simpler than in AdS3:

http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_7
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_11
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Positive energy theorem The asymptotically flat metric ( j, p) has energy bounded
from below under BMS3 transformations if and only if p belongs to a Virasoro
coadjoint orbit (at central charge c2 = 3/G) with energy bounded from below. This
is to say that either p is superrotation-equivalent to a constant p0 ≥ −c2/24, or p
belongs to the unique massless Virasoro orbit with bounded energy.

As a corollary, we now know that all conical deficits and all flat space cosmologies
have energy bounded from below under BMS3 transformations. By contrast, all
conical excesses have energy unbounded from below.

9.4 Flat Limits

There aremany similarities between the asymptotic symmetries of three-dimensional
Anti-de Sitter and flat space-times. Intuitively, this is because the limit � → +∞
(i.e. � → 0) of AdS3 is just Minkowski space. It is tempting to ask if the phenom-
enon can be formulated in a mathematically precise way such that the conclusions of
Sect. 9.1 follow from those of Sect. 8.2 by a suitably defined flat limit. This question
was addressed in [59], and the answer is yes. In short, upon reformulating Brown–
Henneaux boundary conditions in Bondi-like coordinates at null (rather than spatial)
infinity, the Minkowskian asymptotic Killing vectors (9.17), the on-shell metrics
(9.25) and the surface charges (9.31) are flat limits of their AdS3 counterparts dis-
played in Eqs. (8.30), (8.38) and (8.42) respectively. In particular, BMS3 symmetry
may be seen as a limit of two-dimensional conformal symmetry.

In this section we explore this flat limit from the point of view of group theory,
starting from the definition of the AdS3 asymptotic symmetry group as a set of
conformal transformations of a time-like cylinder. We describe the limit at the level
of groups, then at the level of Lie algebras, and finally at the level of the coadjoint
representation. We end by pointing out a different contraction that produces the
Galilean conformal algebra in two dimensions. Considerations related to flat limits
of unitary representations are relegated to Sect. 10.2.

9.4.1 From Diff(S1) to BMS3

In Anti-de Sitter space, spatial infinity coincides with null infinity. This observation
allows one to reformulate Brown–Henneaux boundary conditions (originally defined
at spatial infinity) in terms of Bondi-like coordinates (r,ϕ, u) at null infinity [59].
The conclusion of this reformulation is that AdS3 results take the same form as in the
standard Fefferman–Graham gauge, up to the replacement of the time coordinate t by
a retarded time coordinate u. In particular one can introduce light-cone coordinates

x± ≡ u

�
± ϕ (9.78)

http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_10
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in terms ofwhich the asymptotic symmetry group acts on the cylinder at (null) infinity
according to conformal transformations (8.37). Our goal here is to start from these
transformations and rediscover the BMS3 transformations (9.12).

The way to go is to expand everything in powers of a “small” parameter ε = 1/�.
In practice � is dimensionful so it makes no sense to think of it as being “large”; a
more precise statement would be that the dimensionless Brown–Henneaux central
charge, proportional to �/G, must go to infinity. Despite this subtlety we will keep
referring to � as a “large” parameter, keeping in mind that there exists a more precise
formulation of the procedure.

In order to distinguish Virasoro elements from those of BMS3, we denote ele-
ments of the group Diff(S1) × Diff(S1) as pairs (F , F̄) where F and F̄ are lifts of
orientation-preserving diffeomorphisms of the circle satisfying the conditions (6.7).
Let then (F , F̄) be a conformal transformation of the cylinder with coordinates
(9.78). In the large � limit the transformation of the angular coordinate ϕ becomes

ϕ �→ 1

2

(F(x+) − F̄(x−)
) �→+∞→ 1

2

(F(ϕ) − F̄(−ϕ)
)
, (9.79)

where the combination of F’s on the far right-hand side was obtained by Taylor-
expanding functions around ±ϕ in terms of the small parameter u/�, and neglecting
all terms of order O(1/�). The combination of diffeomorphisms in (9.79) is itself a
(lift of a) diffeomorphism of the circle. Indeed one readily verifies that

f (ϕ) ≡ 1

2
(F(ϕ) − F̄(−ϕ)) (9.80)

satisfies the conditions (6.7) whenF and F̄ do. Let us investigate what happens with
the time coordinate u in the same limit. Using (9.80) we find

u �→ �

2

(F(x+) + F̄(x−)
) �→+∞→ �

2

(F(ϕ) + F̄(−ϕ)
) + f ′(ϕ)u,

where all terms O(1/�) were neglected once more. The first term on the far right-
hand side is potentially divergent: typical diffeomorphisms are independent of �, so
the first term goes to infinity in the large � limit. Note, however, that the combination
F(ϕ) + F̄(−ϕ) is 2π-periodic. Thus, in order for the limit � → +∞ to work we
require that there be a finite, �-independent function α on the circle such that

F(ϕ) + F̄(−ϕ) ≡ 2

�
α( f (ϕ)) + O(1/�2) (9.81)

where the argument of α is taken to be f (ϕ) for convenience. This is to say that the
diffeomorphisms F and F̄ are required to depend on � in such a way that

F̄(−ϕ) = −F(ϕ) + O(1/�). (9.82)

http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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For instance, if F(ϕ) = ϕ + θ and F̄(ϕ) = ϕ + θ̄ are rotations, this condition
says that θ − θ̄ goes to zero at least as fast as 1/� in the large � limit. With this
choice the transformation law of u reduces to u �→ f ′(ϕ)u + α( f (ϕ)). Including
(9.79), we have thus reproduced the BMS3 transformations (9.12) from a flat limit of
Diff(S1)×Diff(S1). In this sense the centreless BMS3 group (9.58) is a flat limit of the
asymptotic symmetry group of AdS3 with Brown–Henneaux boundary conditions.
In particular superrotations arise in the form (9.80) while supertranslations (9.81)
measure how fast F̄(ϕ) goes to−F(−ϕ) as � goes to infinity. Similar considerations
would reproduce the centrally extended BMS3 group (9.62) as a contraction of the
direct product of two Virasoro groups.

Note that the condition (9.82) does not imply that there are less elements in the
BMS3 group than in the group Diff(S1)×Diff(S1). Indeed, both groups are infinite-
dimensional Lie groups consisting of two spaces of functions on the circle and have
the same cardinality in this sense.

9.4.2 From Witt to bms3

The limit from Diff(S1) × Diff(S1) to BMS3 can be reformulated in terms of Lie
algebras. Again, our notation will be slightly different from that of the previous
chapters so as to distinguish AdS3 quantities fromMinkowskian quantities. Thus we
consider a vector field X (x+)∂+ + X̄ (x−)∂− on a two-dimensional cylinder and use
∂± = 1

2 (�∂u ± ∂ϕ) to rewrite it as

�

2

(X (x+) + X̄ (x−)
)
∂u + 1

2

(X (x+) − X (x−)
)
∂ϕ . (9.83)

In the flat limit � → +∞ the angular component becomes

1

2

(X (x+) − X̄ (x−)
) �→+∞→ 1

2

(X (ϕ) − X̄ (−ϕ)
) ≡ X (ϕ) (9.84)

where X (ϕ) is some function on the circle, later to be interpreted as (the component
of) a superrotation generator. For the time component one finds

�

2

(X (x+)+X̄ (x−)
) �→+∞→ �

2

(X (ϕ)+X̄ (−ϕ)
)+uX ′(ϕ) ≡ α(ϕ)+uX ′(ϕ) (9.85)

where we have oncemore introduced a functionα on the circle, later to be interpreted
as (a component of) a supertranslation generator. This time the requirement is

X (ϕ) + X̄ (−ϕ) = 2

�
α(ϕ) (9.86)
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with a finite, �-independent α, and is directly analogous to the condition (9.81). All
in all we find that, in the flat limit, the vector field (9.83) turns into

ξ(X,α) ≡ X (ϕ)∂ϕ + (
α(ϕ) + uX ′(ϕ)

)
∂u

and thus coincides with the leading non-radial components of the asymptotic Killing
vector field (9.17). The Lie brackets of such vector fields satisfy the centreless bms3
algebra; the latter is thus a flat limit of the direct sum of two Witt algebras. Note
that from this perspective the fact that supertranslations have dimensions of length
follows from the fact (9.86) that α(ϕ) is proportional to �.

The limit from Witt to bms3 can also be formulated in terms of commutation
relations. Indeed, let �m = eimx+

∂+ and �̄m = eimx−
∂− denote the generators of two

commutingWitt algebras (6.24). Then the correspondence (9.84)–(9.86) instructs us
to define would-be superrotation and supertranslation generators

jm ≡ �m − �̄−m , pm ≡ 1

�
(�m + �̄−m) . (9.87)

The terminology here is consistent with the fact that, on the cylinder, �0 − �̄0 gen-
erates rotations while �0 + �̄0 generates time translations. In the basis (9.87), the
commutation relations of the direct sum of two Witt algebras take the form

i[ jm , jn] = (m−n) jm+n , i[ jm , pn] = (m−n)pm+n , i[pm , pn] = 1

�2
(m−n) jm+n .

(9.88)

In the limit � → +∞ the last bracket vanishes and the algebra reduces to (9.10),
reproducing bms3 as expected. The same argument can be applied to the direct sum
of two Virasoro algebras and gives rise to the centrally extended b̂ms3 algebra (see
Eq. (9.93) below).

This observation can be used to define “flat limits” of Lie algebras in general
terms. Consider indeed the Lie algebra g⊕ g, whose generators we denote ta and t̄a ,
with identical commutation relations (5.2) in both sectors:

[ta, tb] = fab
c tc , [t̄a, t̄b] = fab

c t̄c . (9.89)

Then consider the redefinitions

ja ≡ ta + t̄a , pa ≡ 1

�
(ta − t̄a) (9.90)

where � is some length scale that we will eventually let go to infinity. In terms of j’s
and p’s the commutation relations (9.89) become

[ ja, jb] = fab
c jc , [ ja, pb] = fab

c pc, [pa, pb] = 1

�2
fab

c jc (9.91)

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_5
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and the limit � → +∞ reproduces the commutation relations (9.48) of exceptional
semi-direct sums (without central terms). Thus, the flat limit of any group G × G
is an exceptional semi-direct product G �Ad gAb. The flat limit (9.87) giving rise
to bms3 from two copies of the Witt algebra is a special case of that construction.
Indeed, the map

�m �→ −�−m (9.92)

is a Lie algebra isomorphism when the �m’s generate a Witt algebra (6.24), so the
redefinitions (9.87) precisely take the form (9.90) with the correspondence ta ↔ �m
and t̄a ↔ −�̄−m . As it turns out, all symmetry algebras found so far in the realm of
asymptotically flat field theories in three dimensions can be seen as flat limits of the
type just described when compared to their AdS3 counterparts.

The limiting procedure that turns the sum of two Witt algebras into bms3 is
an example of Inönü-Wigner contraction [60], similar to the relation between the
Poincaré group and theGalilei group. Conversely, the direct sum of twoWitt algebras
is a deformation ofbms3. The same construction can be used to show that the Poincaré
algebra is a flat limit of the AdS3 isometry algebra, so(2, 2) ∼= sl(2, R) ⊕ sl(2, R).
We will return to this in Sect. 10.2.

9.4.3 Stress Tensors and Central Charges

We now apply the flat limit to the coadjoint representation of two Virasoro groups,
generally with non-zero central charges. Let therefore T (x+) and T̄ (x−) be CFT
stress tensors transformingunder left and right conformal transformations asVirasoro
coadjoint vectors with central charges c and c̄, respectively. (In (8.38) we denoted
these stress tensors as p, p̄, but here we keep the letter p for supermomenta.) They
are paired with vector fields X (x+)∂+ + X̄ (x−)∂− on the cylinder according to

〈
(T, T̄ ), (X , X̄ )

〉 = 1

2π

∫ 2π

0
dϕ

[
T (x+)X (x+) + T̄ (x−)X̄ (x−)

]

which (up to notation) is just the AdS3 surface charge (8.42). As above we expand
the functions T and T̄ in powers of 1/� and we define

p(ϕ) ≡ lim
�→+∞

1

�

(
T (x+) + T̄ (x−)

)
, j (ϕ) + up′(ϕ) ≡ lim

�→+∞
(
T (x+) − T̄ (x−)

)
.

Using (9.85) and (9.86) one then verifies that, in the limit � → +∞,

T (x+)X (x+) + T̄ (x−)X̄ (x−) = j (ϕ)X (ϕ) + p(ϕ)α(ϕ) + u(pX)′(ϕ),

which coincides up to a total derivative with the integrand of the flat surface charge
(9.31). In other words the surface charges of flat space gravity are large � limits

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
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of those of AdS3. In mathematical terms this is to say that the flat limit of the
coadjoint representation of the direct product of two Virasoro groups is the coadjoint
representation of the (centrally extended) BMS3 group.

This phenomenon also allows us to relate the central charges of the Virasoro
algebra to those of b̂ms3. (We could have done this in terms of abstract Lie algebra
generators, but for comparison with three-dimensional gravity we do it here in terms
of coadjoint vectors.) Let us consider two Virasoro algebras with central charges c
and c̄ that depend on � as

c = A� + B + O(1/�), c̄ = A� + B̄ + O(1/�)

where A, B and B̄ are �-independent. Then the definitions

c1 ≡ lim
�→+∞(c − c̄), c2 ≡ lim

�→+∞
c + c̄

�
(9.93)

allows us to write the flat limit of the algebra in the b̂ms3 form (9.71) in terms of
generators ( jm, pm) related to Virasoro generators (�m, �̄m) by (9.87). This is the
centrally extended analogue of the flat limit described in (9.91). Note that for the
Brown–Henneaux central charges (8.40) the prescription (9.93) yields c1 = 0 and
c2 = 3/G, which are indeed the standard values for asymptotically flat space-times.

Remark The fact that flat space holography can be studied as a flat limit of the
AdS/CFT correspondence is an old idea [61, 62]; see also [63–65]. Here we have
described its group-theoretic formulation. It should be noted, however, that there is
no known limiting construction that yields BMS symmetry in four dimensions from
some corresponding asymptotic symmetry in AdS4.

9.4.4 The Galilean Conformal Algebra

The bms3 algebra turns out to be isomorphic to the Galilean conformal algebra in
two dimensions. We now explain how the latter can be obtained as a non-relativistic
contraction of two Witt algebras and discuss the extent to which Galilean conformal
symmetry applies to asymptotically flat gravity in three dimensions. As in the earlier
sections of this chapter we work only at the classical level. The quantum version of
these considerations will be exposed in Sect. 10.2.

The redefinitions (9.90) suggest a contraction ofWitt algebras that differs from the
flat limit (9.87). Namely, instead of performing the involution (9.92) before taking
the limit � → +∞, one can define

j̃m ≡ �̄m + �m , p̃m ≡ 1

�
(�̄m − �m) . (9.94)

http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_10
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In contrast to (9.87), this redefinition has nothing to do with the flat limit of AdS3,
but the limit � → +∞ still gives rise to an algebra with commutation relations (9.10)
upon renaming jm → j̃m and pm → p̃m . The key difference is that now the generator
of time translations is j̃0 (since it coincides with �0+ �̄0) while p̃0 generates rotations
(since it is proportional to �0 − �̄0). More generally, with the redefinition (9.94), the
generators of would-be supertranslations do not commute while those of would-be
superrotations do commute. This is the opposite of the behaviour of superrotations
and supertranslations in three-dimensional Einstein gravity.

The redefinitions (9.94) can be interpreted as a non-relativistic contraction of the
direct sum of two Witt algebras in two dimensions, analogous to the usual Inönü-
Wigner contraction of the Poincaré algebra to the Galilei algebra. For this reason the
algebra spanned by j̃m’s and p̃m’s is known as theGalilean conformal algebra in two
dimensions [66, 67]. It is the non-relativistic limit of the conformal algebra in two
dimensions and, by a geometric coincidence, it is isomorphic to bms3. The Galilean
conformal algebra has been extensively studied in its own right; see e.g. [68] for its
supersymmetric extension and [66, 69] for its highest-weight representations. It is a
fundamental tool in the non-relativistic limit of the AdS/CFT correspondence [70].
In what follows we denote it by gca2.

At some point the isomorphism gca2
∼= bms3 led to the proposal that flat space

holography (in three space-time dimensions) is described by a Galilean conformal
field theory [67, 71]. In view of the geometric interpretation of superrotations and
supertranslations described above, this sounds suspicious: the Galilean conformal
algebra is a version of the bms3 algebra “rotated by 90 degrees” where the roles of
the Hamiltonian and angular momentum are exchanged. In particular the flat limit
of AdS3/CFT2, if it exists, should not give rise to a Galilean conformal field theory
since the gravitational flat limit (9.87) of two Witt algebras gives rise to standard
bms3, in which p0 generates time translations. Nevertheless, at the level of classical
symmetries, there is essentially no distinction between bms3 and gca2; the two are
interchangeable. This coincidence led tomany publications concernedwith flat space
holography and attempting to describe its dual theory as a Galilean conformal field
theory; see e.g. [72–74] and references therein. One of the goals of this thesis is to
explain why the dual theory of asymptotically flat gravity, if it exists at all, cannot
be a Galilean conformal field theory. The reason for this is rooted in the elementary
observation that the correspondence bms3 ↔ gca2 exchanges the Hamiltonian and
the angular momentum, but we will go much beyond that. In fact we shall see that
the difference between bms3 and gca2, while classically invisible, becomes apparent
at the quantum level. This will rely on the induced representations developed in the
next chapter and will be studied in much greater detail in Sect. 10.2. As it turns out,
the most striking illustration of this distinction will arise in Sect. 11.2 in the realm of
quantum higher-spin theories.

This being said, we stress that discarding Galilean conformal field theories as
putative duals for asymptotically flat gravity does not rule out all the conclusions
of the substantial literature on flat space holography approached from the Galilean
side. Rather, the point we wish to make is that those computations that did work in

http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_11
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flat space while relying on gca2 symmetry would have worked equally well in the
language of BMS3 symmetry. More precisely, any computation that holds for gca2
but does not rely on its realization as a quantum symmetry algebra also holds for
bms3, and therefore for asymptotically flat gravity.
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Chapter 10
Quantum BMS3 Symmetry

This chapter is devoted to irreducible unitary representations of the BMS3 group, i.e.
BMS3 particles, which we classify and interpret. As we shall see, the classification
is provided by supermomentum orbits that coincide with coadjoint orbits of the
Virasoro group. Upon identifying supermomentum with the Bondi mass aspect of
asymptotically flat metrics, we will be led to interpret BMS3 particles as relativistic
particles dressed with gravitational degrees of freedom.

The plan is as follows. In Sect. 10.1 we classify BMS3 particles according to
orbits of supermomenta under superrotations. We also describe and interpret the
resulting Hilbert spaces of wavefunctions, which we relate to the quantization of
(coadjoint) orbits of asymptotically flat metrics under BMS3. Section10.2 is devoted
to the description of BMS3 particles as representations of the (centrally extended)
bms3 algebra and their relation to highest-weight representations of the Virasoro
algebra; we also briefly touch upon Galilean representations. Finally, in Sect. 10.3
we evaluate characters of BMS3 particles. To lighten the notation, from now on the
words “BMS3 group” or “bms3 algebra” implicitly refer to their centrally extended
versions (except if stated otherwise). We also abuse notation by writing Diff(S1) to
refer either to Diff+(S1) or to˜Diff+(S1), depending on the context.

Most of the results exposed in this chapter have been reported in the papers [1–4].
The relation between BMS3 particles and gravitational one-loop partition functions
[5, 6] will be described in the next chapter. Note that the considerations that follow
rely heavily on the material of Chap. 4.

10.1 BMS3 Particles

In high-energy physics a particle is usually defined as an irreducible unitary represen-
tation of the Poincaré group. If one takes BMS symmetry seriously, it is tempting to
apply the same terminology to representations of BMS. Accordingly, in this section
our goal is to answer the following question:

© Springer International Publishing AG 2017
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Replace the word“Poincaré′′ by“BMS′′ in the definition of a particle.
What new notion of particle does one then obtain?

What new quantum numbers describe its degrees of freedom?

In principle this problem should be addressed in the realistic four-dimensional world.
However, as mentioned in the introduction of this thesis, BMS symmetry in four
dimensions is very poorly understood at present, so we will content ourselves with
the more modest task of understanding irreducible unitary representations of BMS in
three dimensions— that is,BMS3 particles. Remarkably, wewill discover that BMS3
particles are labelled by mass and spin, exactly as standard relativistic particles. As
in Sect. 8.4, we will interpret their extra degrees of freedom as boundary gravitons,
or equivalently soft gravitons.

The plan of this relatively long section is the following.Wefirst describe the super-
momentum orbits and little groups that classify BMS3 particles. We shall see that
these orbits are in fact coadjoint orbits of the Virasoro group, which will allow us to
definemassive,massless and tachyonicBMS3 particles.We also discuss the existence
of integration measures on supermomentum orbits, since such measures are required
to define scalar products of wavefunctions. We then describe the states represented
by such wavefunctions and interpret them as particles dressed with quantized gravi-
tational degrees of freedom, in accordance with the relation between asymptotically
flat metrics and the coadjoint representation of BMS3. We also apply this interpreta-
tion to the vacuum representation and to spinning BMS3 particles, and we conclude
by discussing the extension of our considerations to four space-time dimensions.

10.1.1 Orbits and Little Groups

Our goal is to understand the quantum-mechanical implementation of BMS3 symme-
try, at least as far as irreducible representations are concerned. According to Sect. 2.1
we should leave room for projective representations; to do this we consider exact
representations of the universal cover of the universal central extension of the con-
nected BMS3 group, that is, ̂BMS3. The latter was defined in (9.62). Since ̂BMS3
is a semi-direct product, one expects all its irreducible unitary representations to
be induced à la Wigner. These representations are classified by the orbits and little
groups described in general terms in Sect. 4.1. Here we perform that classification.

Supermomentum Orbits

The key ingredient in the description of BMS3 particles is the dual of the space of
supertranslations, ̂Vect(S1)∗Ab. Following the terminology of Sect. 9.2, its elements
are centrally extended supermomenta

(
p(ϕ)dϕ2, c2

)
(10.1)

http://dx.doi.org/10.1007/978-3-319-61878-4_8
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paired with centrally extended supertranslations (α,λ) according to (6.111) with the
replacements X → α and c → c2. As mentioned below (6.69), p(ϕ) has dimensions
of energy; its three lowest Fourier modes form a Poincaré energy-momentum vector
(in particular the zero-mode is the energy of p). More generally p(ϕ) is an energy
density on the circle while the central charge c2 is an energy scale. Supermomentum
transforms as a Virasoro coadjoint vector (9.70) under superrotations, so the allowed
supermomenta of a BMS3 particle span a coadjoint orbit of the Virasoro group at
central charge c2. This is the first key conclusion of this section:

Theorem The orbit Op of a supermomentum (p, c2) under superrotations is a coad-
joint orbit of the Virasoro group at central charge c2.

When interpreting p(ϕ) as the Bondi mass aspect of an asymptotically flat met-
ric (9.25), the orbit Op is a subset of the orbit (9.77) of the metric under BMS3
transformations. In that context the central charge c2 coincides with the Planck mass
(9.29). Accordingly, from now on we restrict our attention to centrally extended
supermomenta whose central charge c2 is strictly positive.

Massive and Massless BMS3 Particles

The statement that supermomentum orbits are Virasoro coadjoint orbits is analogous
to the fact that coadjoint orbits of SL(2, R) classify the momenta of relativistic par-
ticles in three dimensions. In particular the map of Poincaré momenta in Fig. 4.3b is
embedded in the larger picture of Fig. 7.3, which is now interpreted as amap of BMS3
supermomenta. Thus, supermomentum orbits that contain a constant representative
(the vertical line in Fig. 7.3) are the supermomenta of BMS3 particles that admit a
rest frame.

Definition A massive BMS3 particle is a BMS3 particle whose supermomenta span
a Virasoro coadjoint orbit that admits a generic constant representative p0.

In this definition the word “generic” refers to the fact that p0 should not take
one of the discrete exceptional values −n2c2/24. Indeed the orbits containing such
exceptional constants are better thought of as BMS3 generalizations of the trivial
representation of Poincaré; we will return to this interpretation below.

By contrast, supermomentum orbits that do not admit a constant representative
describe BMS3 particles that have no rest frame. For instance, the discrete dots that
do not belong to the vertical line in Fig. 7.3 are BMS3 generalizations of massless
Poincaré particles, while the horizontal lines of Fig. 7.3 generalize tachyons.

Definition A massless BMS3 particle is a BMS3 particle whose supermomenta span
a Virasoro coadjoint orbit with non-degenerate parabolic monodromy and non-zero
winding number. A BMS3 tachyon is a BMS3 particle whose supermomenta span a
Virasoro coadjoint orbit with hyperbolic monodromy and non-zero winding number.

In these definitions the terms “monodromy” and “winding number” refer to the
Virasoro invariants defined in Sect. 7.1. They are the BMS3 generalization of the
mass squared in the Poincaré group.

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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Little Groups

The little groups of BMS3 particles coincide with the stabilizers of the corresponding
Virasoro coadjoint orbits. Here, for comparison with the Poincaré little groups of
Sect. 4.3, we list the little groups obtained by using the central extension of the
multiply connected BMS3 group (9.60). The list of orbits is that of Sect. 7.2 and their
little groups are summarized in Table7.1:

• For a massive BMS3 particle, the stabilizer is the group U(1) of spatial rotations.
• For a vacuum-like BMS3 particle whose supermomentum at rest takes the value

−n2c2/24, the little group is an n-fold cover of the Lorentz group in three dimen-
sions, PSL(n)(2, R) (with n ≥ 1).

• For a massless particle with winding number n ≥ 1, the little group is R × Zn.
• For a BMS3 tachyon with winding number n ≥ 1, the little group is R × Zn.

This list should be comparedwith Table4.1. The representations of these little groups
will lead to a notion of BMS3 spin. Note that when dealing with the universal cover
(9.61) of BMS3, all compact directions of the above little groups get decompactified
so that U(1) is replaced by R, PSL(n)(2, R) is replaced by its universal cover, and Zn

is replaced by the group T2π/n
∼= Z of translations of R by integer multiples of 2π/n.

BMS3 Particles with Positive Energy

It is natural to declare that physically admissible BMS3 particles have supermo-
mentum orbits such that the energy functional (7.79) is bounded from below under
superrotations. Finding these particles is the BMS3 analogue of the question (7.82)
encountered in the Virasoro context. The solution is provided by the earlier results
(7.103)–(7.104):

Theorem A BMS3 particle has energy bounded from below if and only if its super-
momenta span one of the Virasoro orbits coloured in red in Fig. 7.7.

Recall that Poincaré particles with positive energy fall in exactly three classes, two
ofwhich contain only onemomentumorbit:massive particles,massless particles, and
the trivial orbit. The theorem tells us that essentially the same conclusion holds for
BMS3 particles, since all supermomentum orbits with energy bounded from below
belong to one of the three following classes:

• the unique vacuum orbit containing the supermomentum p0 = −c2/24,
• one of the massive orbits located above the vacuum and containing a constant
supermomentum p0 > −c2/24,

• the unique massless orbit with energy bounded from below.

From now on, when referring to BMS3 particles we always implicitly refer only to
particles with energy bounded from below (except if explicitly stated otherwise).
Note that, in contrast with Virasoro representations, BMS3 particles with unbounded
energy may provide unitary representations of BMS3. Furthermore the energy spec-
trum of any BMS3 particle is continuous.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_9
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10.1.2 Mass, Supermomentum, Central Charge

In the list of physical BMS3 particles, the only family with infinitely many members
is the class of massive particles. Let us therefore describe these particles in some
more detail and interpret the labels (p, c2) that classify them.

Defining Mass

The starting point is the observation that the vacuum supermomentum is
pvac = −c2/24, while the supermomentum at rest of any massive BMS3 particle
is located above that vacuum value.

Definition Consider a massive BMS3 particle with supermomentum at rest p0 >

−c2/24. Then the mass of the particle is

M ≡ p0 + c2/24. (10.2)

Massive BMS3 particles with energy bounded from below have positive mass.
The definition of mass in Eq. (10.2) can be rewritten in a manifestly superrotation-

invariant way, without invoking any rest frame. Indeed, recall from (7.22) that the
value of p0 determines the trace of the monodromy matrix M. This relation can be
inverted and combined with the definition (10.2), which yields

M = c2
24

[
1 +

( 1

π
arccosh

[
Tr(M/2)

])2
]

(10.3)

wherewe assume for definiteness that p0 ≥ 0,which is to say thatM is hyperbolic and
M ≥ c2/24. The same relation holds for ellipticM, henceM < c2/24, upon replacing
arccosh by i arccos, with the convention arccos(1) = 0 and arccos(−1) = π.

Formula (10.3) is a superrotation-invariant definition of the mass of a BMS3
particle, since the trace of the monodromy matrix associated with Hill’s equation is
Virasoro-invariant. It is a BMS3 analogue of the relation

M2 = E2 − p2 = −pμp
μ

that determines the mass of a Poincaré particle from its energy-momentum pμ. As a
bonus, (10.3) allows us to distinguish massive particles with elliptic and hyperbolic
monodromy. This distinction is consistent with three-dimensional gravity, where
metrics with a Bondi mass aspect p0 < 0 are conical deficits— i.e. classical particles
— while metrics with p0 > 0 are flat space cosmologies —Minkowskian analogues
of BTZ black holes. Furthermore, Eq. (10.3) confirms that massless BMS3 particles
(with positive energy) are actually massless. Indeed, the corresponding monodromy
matrix is (7.78) with winding number n = 1. This implies that Tr(M) = −2 for
physical massless BMS3 particles, which can be plugged into (10.3) and yields
M = 0 upon using arccosh(−1) = i arccos(−1) = iπ. It would have been impossible

http://dx.doi.org/10.1007/978-3-319-61878-4_7
http://dx.doi.org/10.1007/978-3-319-61878-4_7
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to obtain this result with the weaker definition of mass of Eq. (10.2), since massless
particles have no rest frame.

Interpreting Supermomentum

In order to develop our intuition about the supermomentum vector p(ϕ), it is use-
ful to rewrite standard Poincaré momenta in terms of functions on the circle. The
supermomentum of a Poincaré particle with massM typically takes the form

p(ϕ) =
√
M2 + p2x + p2y + px cosϕ + py sinϕ − c2

24
(10.4)

and represents a particle moving in space with a spatial momentum (px, py). Note
the extra factor −c2/24 at the end, which ensures thatM actually coincides with the
mass of the particle.

One can then use (9.70) to act with superrotations on (10.4) and obtain various
boosted momenta. In particular, Lorentz transformations take the form (6.88) and act

on the components (
√
M2 + p2x + p2y, px, py) according to the vector representation.

This point can be verified by taking a supermomentum at rest, p0 = M − c2/24, and
acting on it with a boost (7.100) in the direction ϕ = 0,

eif (ϕ) = cosh(γ/2)eiϕ + sinh(γ/2)

sinh(γ/2)eiϕ + cosh(γ/2)
(10.5)

where γ is the rapidity (in terms of standard velocity, γ = arctanh(v)). Since this
superrotation is of the projective form (6.88), its Schwarzian derivative satisfies
(6.94) and the corresponding transformation (9.70) of the supermomentum p can be
rewritten as

(
f · p)(f (ϕ)) + c2

24
= 1

(f ′(ϕ))2

[
p(ϕ) + c2

24

]
. (10.6)

This says that the combination p+ c2/24 transforms under Lorentz transformations
as a centreless coadjoint vector of Diff(S1). In particular, the supermomentum of a
massive particle at rest transforms according to (10.6) with p(ϕ) = M − c2/24. As
a result, since f ′(ϕ) is given by (7.101), the energy E[γ] of the boosted particle is

E[γ] = M

2π

∫ 2π

0

dϕ

f ′(ϕ)
= M cosh γ

while the boosted spatial momentum along the x direction is

px[γ] = M

2π

∫ 2π

0

dϕ

f ′(ϕ)
cos(f (ϕ)) = M sinh γ.
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http://dx.doi.org/10.1007/978-3-319-61878-4_7
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(a) (b)

Fig. 10.1 Two possible supermomenta of a massive BMS3 particle. In a the supermomentum is
that of a boosted Poincaré particle, given by Eq. (10.4); it is a function on the circle located above
the line −c2/24 and its only non-zero Fourier modes are the three lowest ones. In b the function is
dressed with extra non-vanishing Fourier modes, which results in more wiggles. These extra Fourier
modes account for gravitational degrees of freedom that do not appear in the pure Poincaré case

The boosted spatial momentum along the y direction vanishes, as it should. This
confirms that Lorentz transformations act on a supermomentum at rest exactly as in
standard special relativity (albeit in three space-time dimensions).

From these considerations we can now draw a general conclusion on the supermo-
mentum of a (massive) BMS3 particle. Typically, the function p(ϕ) will have some
non-trivial profile on the circle; for instance the momentum of a particle moving fast
in the x direction is represented by a function p(ϕ) which is larger than −c2/24,
has a bump around the point ϕ = 0, and almost vanishes in the neighbourhood
of the opposite point ϕ = π. If the particle is obtained by a pure Poincaré boost
from a particle at rest, the only non-vanishing components of its supermomentum
are its three lowest Fourier modes, p0, p1, p−1 (as in Eq. (10.4)). Upon switching
on superrotations, the supermomentum of the particle acquires extra Fourier modes
(p2, p3, etc.) that dress the original Poincaré momentum with additional fluctuations.
In the upcoming pages we will interpret these extra degrees of freedom as being of
gravitational origin (Fig. 10.1).

Interpreting the Central Charge

The central charge c2 is an energy scale; this is manifest in formula (10.3), where c2
converts the dimensionless trace of a monodromy matrix into a mass M. The actual
value of c2 is arbitrary in principle, but in Einstein gravity it is proportional to the
Planck mass: c2 = 3/G. In particular, note that c2 is not a Virasoro central charge,
even though it appears in the transformation law (9.70) of supermomentum as if p
was a CFT stress tensor.

It is worth stressing the crucial importance of c2 for the conclusions of the previ-
ous pages. For one thing, the whole classification of supermomentum orbits and the

http://dx.doi.org/10.1007/978-3-319-61878-4_9
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ensuing definition of massive/massless BMS3 particles only makes sense because c2
is non-zero. If c2 happened to vanish, none of these results would hold since the cor-
responding supermomentum orbits would be Virasoro coadjoint orbits at vanishing
central charge, and we saw in Sect. 7.1 that these orbits are radically different from
(and arguably much uglier than) their centrally extended peers. This is not to say that
c2 must be non-zero in order for the supermomentum (10.1) to yield a representation
of the BMS3 group; in principle, representations associated with orbits having c2 = 0
are just as acceptable as representations in which c2 �= 0. However the application to
gravity, and the ensuing interpretation of representations as particles, relies crucially
on the fact that c2 = 3/G does not vanish. Note that the change of monodromy
occurring at M = c2/24 suggests that something radical happens with BMS3 par-
ticles whose mass is higher than that bound. This bifurcation reflects the fact that
the metric of the gravitational field surrounding the particle changes from that of a
conical deficit (when M < 1/8G) to that of a flat cosmology (when M > 1/8G).

10.1.3 Measures on Superrotation Orbits

Suppose we actually want to describe the space of states of a BMS3 particle with
supermomentum orbit Op. If the particle is scalar, then its Hilbert space consists
of complex-valued wavefunctions (4.20) in supermomentum space whose scalar
product (3.7) involves an integral over Op with some measure μ. The latter needs to
be quasi-invariant under superrotations,1 which motivates the following question:

Let Op be a V irasoro coadjoint orbit at non − zero central charge;
is there a quasi − invariant Borel measure on it?

(10.7)

If the answer is affirmative, then the measure is a functional one since Op consists
of functions on the circle.

A Conjecture

Our viewpoint regarding the problem (10.7) will be pragmatical: path integral mea-
sures are used on a daily basis in quantummechanics, and their efficiency in correctly
predicting the values of physical observables is firmly established. Thus, if one is
willing to define Hilbert spaces of square-integrable functions thanks to functional
measures, their application to BMS3 particles is as acceptable as in quantum physics.
In particular one may hope that Virasoro coadjoint orbits do admit quasi-invariant
measures:

Conjecture Let Op be a Virasoro coadjoint orbit with non-zero central charge (and
energy bounded from below). Then there exists a Borel measure dμ(q) onOp which
is quasi-invariant under the action of the Virasoro group (where q ∈ Op).

1We recall that the definition of quasi-invariant measures was given in Sect. 3.2.
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In the remainder of this thesis we will rely on this conjecture in order to define the
Hilbert space of a BMS3 particle (at least one with bounded energy). The conjecture
does not say how themeasure dμ(q) is actually defined, but this is not a problem since
the results of Sect. 3.2 imply that induced representations based on different quasi-
invariantmeasures are unitarily equivalent. Thus, assuming that the conjecture is true,
we do not really need to know anything specific about the measure.2 In particular the
character computation of Sect. 10.3, although relying on an unknown measure, will
produce an unambiguous result.

Aside from these basic observations, we will have very few concrete things to say
about the measure. Nevertheless the lines that follow are devoted to a brief review
of the literature on Virasoro measure theory, with the intent of further motivating the
validity of the conjecture. The reader who is not interested in mathematical subtleties
is free to go directly to Sect. 10.1.4.

Remark Recall that all irreducible unitary representations of regular semi-direct
products are induced representations, where regularity refers to the property defined
at the end of Sect. 4.1. Accordingly, in order to claim that all irreducible unitary
representations of BMS3 are BMS3 particles whose supermomenta span Virasoro
orbits, we would have to prove that the BMS3 group is a regular semi-direct product,
which in turn relies on the existence of a measure on the space of supermomenta.
We will not address this question here and assume instead that the standard results
on finite-dimensional semi-direct products carry over to BMS3.

Measures on Virasoro Orbits

The issue of rigorously defining path integral measures was first addressed byWiener
about a century ago, in the context of stochastic processes. We refer e.g. to the
biographical memoir in [7] for more references and a more accurate account of the
development of the subject. The problem of defining a Wiener-like quasi-invariant
measure on Virasoro coadjoint orbits is more recent, but well known. In the physics
literature, as in our conjecture above, the question of the measure is mostly treated in
a heuristic way motivated by quantum mechanics; see e.g. [8] for such an approach.
By contrast, there is a fair amount of mathematical literature that aims at solving
the problem in a rigorous way, and to our knowledge no definite, widely accepted
solution is known at present. As announced above, we do not claim to provide an
answer here; rather, we shall content ourselves with a brief literature review.

The main motivation for defining Virasoro measures comes from representa-
tions of the Virasoro algebra and conformal field theory; the hope is that such
measures could provide a rigorous prescription for the geometric quantization of
Virasoro orbits. This approach to the problem is adopted for instance in [9–12]. In
[13] the authors tackle the issue with a similar motivation, though with different
methods; in particular it is suggested there that a measure might be provided by an

2Note that the existence of a quasi-invariant measure dμ(q) onOp implies the existence of infinitely
many other ones, since one can always multiply the measure by a strictly positive smooth function
ρ(q) and obtain a new measure ρ(q)dμ(q).

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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infinite-dimensional version of the Liouville measure (5.14) obtained by taking the
Kirillov–Kostant symplectic form (8.62) to an infinite power.

A somewhat different approach consists in building measures on Virasoro orbits
regardless of their relation to conformal field theory and highest-weight represen-
tations. This approach does not simplify the problem of geometric quantization of
Virasoro orbits, but it does have the virtue of producing the desired measure. One
should keep in mind that the measures needed for BMS3 particles generally have
nothing to do with those needed for geometric quantization of the Virasoro group, so
the fact that a measure is unrelated to Virasoro representations is not a problem for
our purposes. As it turns out, certain results due to Shavgulidze [14–17] precisely
point in that direction (see also [18, 19]). Indeed it was shown in [14] that the group
of diffeomorphisms of any compact manifold can be endowed with a quasi-invariant
Borel measure. This measure then plays a role analogous to the Haar measure (recall
Sect. 3.2) and ensures that quotients of the group, such as Diff(S1)/S1, can also be
endowed with a quasi-invariant measure. As a corollary, Virasoro orbits (all of which
are quotients of Diff(S1)) should generically admit quasi-invariant Borel measures.
This is precisely what is needed for BMS3 particles, and it is in fact our main justi-
fication for the above conjecture.

10.1.4 States of BMS3 Particles

Under the assumption that there exist quasi-invariant measures on Virasoro coadjoint
orbits, we have all the ingredients required to build explicit unitary, irreducible,
projective representations of the BMS3 group. Here we describe and interpret the
wavefunctions that represent the quantum states of a scalar massive BMS3 particle
withmassM > 0. Spinning particles and the vacuum representationwill be described
later.

The States of a BMS3 Particle

The supermomenta of a massive particle span an orbit Op = Diff(S1)/S1 (with
implicit central charge c2 > 0), which we assume to admit a quasi-invariant measure
μ. For convenience the orbit representative p is taken to be the supermomentum
p(ϕ) = p0 = M − c2/24 at rest. As in (4.20) the particle’s Hilbert spaceH consists
of complex-valued wavefunctions

� : Op → C : q 
→ �(q) (10.8)

which are square-integrable with respect to μ in the usual sense that the integral

∫

Op

dμ(q) |�(q)|2 (10.9)
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is finite. As usual, � should be thought of as a wavefunction in (super)momentum
space representing a wavepacket that propagates with fuzzy velocity. In contrast to
the finite-dimensional case, however, the map (10.8) is really a functional since it is
defined on a space of functions:

� : q(ϕ) 
→ �[q(ϕ)].

Similarly the integral (10.9) is actually a functional integral. Despite these compli-
cations we will keep using the simpler notation�(q) for the wavefunctions of BMS3
particles. The scalar product on H = L2(Op,μ, C) is then defined by (3.7) with
(�(q)|�(q)) = �∗(q)�(q).

The space of states of a BMS3 particle carries an action of BMS3 by unitary
transformations. Since we are assuming that the particle is scalar, the action of
BMS3 on H is given by formula (4.23):

(
T [( f ,α)] · �

)
(q) =

√
ρf −1(q) ei〈q,α〉 �(f −1 · q) . (10.10)

Here ( f ,α) is an element of the BMS3 group (9.58), with f (ϕ) a superrotation
and α(ϕ) a supertranslation. The point q ∈ Op is a supermomentum vector and its
pairing 〈q,α〉with α is given by (6.34). The function ρf (q) is the (unknown) Radon–
Nikodym derivative (3.19) of the measure μ; if by chance the measure happens to
be invariant, then one can set ρf (q) = 1. Finally, the action f · q appearing in the
argument of the wavefunction on the right-hand side is the BMS3 generalization of
the action of boosts on momenta; it is given by formula (9.70), which is the coadjoint
representation of the Virasoro group at central charge c2.

RemarkWavefunctionals are common in quantum field theory. Indeed, the quantum
state of a typical field theory is awavefunctional�[φ(x)], whereφ(x) is a spatial field
configuration. The truly striking aspect of (10.8) is not quite the fact that it belongs to
a space of wavefunctionals, but rather that it provides an irreducible representation
of the symmetry group.

BMS3 Particles as Projective Representations

The central charge c2 �= 0 turns expression (10.10) into a projective representation
of the centreless BMS3 group. Indeed, as is manifest in (9.71), c2 is responsible for
an extra term in the commutation relations of superrotations with supertranslations.
At the group-theoretic level this difference is due to the extra terms of the group
operation (9.41), as opposed to the centreless group operation (9.59). In the latter
case we have

( f , 0) · (e,α) = ( f ,Adf α) = (e,Adf α) · ( f , 0) (10.11)

where e is the identity in Diff(S1) and Ad is the action of diffeomorphisms on vector
fields on the circle. By contrast, in the centrally extended case (9.41) there are two
extra slots for central terms and the analogue of (10.11) becomes

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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( f , 0; 0, 0) · (e, 0;α, 0) =
(
f , 0;Adf α,− 1

12
〈S[ f ],α〉

)
,

(e, 0;α, 0) · ( f , 0; 0, 0) =
(
f , 0;Adf α, 0

)

by a term proportional to 〈S[ f ],α〉, with S the Schwarzian derivative (6.76). This
phenomenon is analogous to the statement that boosts and translations do not com-
mute in the Bargmann group (4.103). In practice it means that the wavefunction
obtained by acting first with (e,α), then by ( f , 0), differs from the one obtained by
acting first with ( f , 0), then with (e,Adf α), by a constant complex phase that can
be evaluated using (9.55):

T [( f , 0)] · T [(e,α)] = exp
[
−i

c2
12

〈S[ f ],α〉
]
T [(e,Adf α)] · T [( f , 0)] . (10.12)

This is indeed the statement (2.7) that the representation T is projective, when seen
as a representation of the centreless BMS3 group (9.58). It is the BMS3 analogue of
the Galilean result (4.121).

There is an important subtlety in (10.12): formula (10.10) is a projective repre-
sentation only if one insists on using the centreless group operation (9.59). If instead
one uses the centrally extended group (9.62), projectivity is absorbed by the defini-
tion of the group operation (9.41). This is a restatement of our earlier observation in
Sect. 2.1 that projective representations can be seen in two equivalent ways: either as
genuine projective representations of a centreless group, or as exact (non-projective)
representations of a centrally extended group. This same argument is the reason why
massive BMS3 particles can have arbitrary real values of spin, as we shall discuss
below.

Plane Waves

As in Sect. 3.3 we can describe the representation (10.10) in terms of a basis of
one-particle states with definite (super)momentum on the orbit Op. Let therefore
δ denote the Dirac distribution associated with the measure μ and defined by the
requirement (3.39). In the present case μ is a functional measure, so δ is a functional
delta distribution. For k ∈ Op, we define the plane wave state with supermomentum
k as

�k(q) ≡ δ(k, q) (10.13)

which is now a functional analogue of Eq. (3.43). It is a typical asymptotic state in a
scattering experiment. The scalar products of plane waves are given by (3.44):

〈�k|�k′ 〉 = δ(k, k′). (10.14)

Strictly speaking, plane waves are not square-integrable, hence do not belong to the
space of states of a BMS3 particle. They should therefore be understood in theweaker
sense that any wavepacket (3.45) can be written as an infinite sum of plane waves.
With this word of caution, one may say that plane waves form a “basis” of the space
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of states of a BMS3 particle. Their transformation law under BMS3 transformations
is given by Eq. (4.32),

T [( f ,α)] · �k =
√

ρf (k) ei〈f ·k,α〉 �f ·k , (10.15)

except that we have removed the spin representationR since the particle considered
here has vanishing spin. This formula reflects the fact that a wavefunction with
momentum k boosted by a superrotation f becomes a wavefunction with momentum
f · k. In short, all results of Chaps. 3 and 4 remain valid, up to the fact that manifolds
become spaces of functions while functions become functionals.

10.1.5 Dressed Particles and Quantization

Asymptotically flat gravity enjoys BMS3 symmetry, so its quantization is expected
to produce unitary representations of the BMS3 group. More precisely, since the
phase space of metrics (9.25) is a hyperplane c1 = 0, c2 = 3/G in the space of the
coadjoint representation of ̂BMS3, the geometric quantization of the orbit (9.77) of a
metric (j, p) under asymptotic symmetry transformations is expected to produce an
irreducible unitary representation of BMS3 with supermomentum orbit Op and spin
(5.128) determined by the restriction of j to the Lie algebra of the little group of p.
Thus,

A BMS3 particle is the quantization
of the orbit of a metric under BMS3 transformations.

In the following pages we use this observation to compare BMS3 particles with
standard relativistic particles. For simplicity we focus on a massive scalar particle
whose orbit representative is taken to be the supermomentum p = M− c2/24 at rest.

Leaking Wavefunctions

The transformation law (10.10) is an infinite-dimensional generalization of a scalar
representation (with massM) of the Poincaré group in three dimensions. Indeed, by
restricting one’s attention to the Poincaré subgroup of BMS3, one obtains a (highly
reducible) unitary representation of Poincaré. The latter contains the standard scalar
irreducible representationwithmassM, but it also contains an uncountable infinity of
other representations with higher mass. These extra representations arise because the
action of Lorentz transformations on the supermomentum orbit Op

∼= Diff(S1)/S1

is not transitive; in fact, the set of Lorentz-inequivalent supermomenta is an infinite-
dimensional manifold

PSL(2, R)\Diff(S1)/S1, (10.16)

which is a double quotient of Diff(S1). The quotient on the left is taken with respect
to the Lorentz group PSL(2, R).
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This observation can be rephrased in a more intuitive way: it says that the super-
momentum orbitOp = Diff(S1)/S1 contains infinitely many finite-dimensional sub-
manifolds SL(2, R)/S1 obtained by acting on the orbit with Lorentz transformations.
Each submanifold is a standard momentum orbit (4.97) for massive Poincaré par-
ticles in three dimensions. Any two of those submanifolds are mutually Lorentz-
inequivalent; the set of such inequivalent sub-orbits is the space (10.16).

Now, a wavefunction �(q) of a BMS3 particle is never supported on just one
Lorentz sub-orbit of Op: if it was, some components of its supermomentum would
be sharply defined and the uncertainty principle would be violated. (By the way, we
stress again that the plane waves (10.13) do not actually belong to the Hilbert space.)
Rather, the wavefunction spreads over many Lorentz-inequivalent momentum orbits.
In other words, the wavefunction �(q) “leaks” into the directions of supermomen-
tum obtained by acting with superrotations that are not Lorentz transformations
(Fig. 10.2).

Remark The double quotient (10.16) is an application of the induction-reduction
theorem for induced representations. The latter roughly goes as follows: Let G be
a group with two (generally different) subgroups H,H ′ and let S be an irreducible
representation ofH. Then the restriction toH ′ of the induced representation IndGH(S)

Fig. 10.2 The supermomentum orbit of Fig. 10.3, now with a wavefunction on top. The wavefunc-
tion is roughly supported on a Lorentz sub-orbit, but not quite: it leaks into directions that cannot
be achieved with Lorentz transformations

Fig. 10.3 A supermomentum orbit Op ∼= Diff(S1)/S1 with embedded Lorentz sub-orbits repre-
sented as curvy lines. Lorentz transformations move points along these sub-orbits. Transitions from
one sub-orbit to another are only possible with superrotations that do not belong to the Lorentz sub-
group of Diff(S1). One can define an equivalence relation on the supermomentum orbit by declaring
that two points are equivalent if they belong to the same Lorentz sub-orbit. The quotient of Op by
that equivalence relation is the double quotient (10.16)

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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is a direct integral of irreducible representations of H ′ labelled by the points of the
double quotient H ′\G/H. In (10.16) we have applied this theorem to G = BMS3,
H = U(1) � Vect(S1) and H ′ = PSL(2, R) � sl(2, R). The latter is the Poincaré
group in three dimensionswhile theU(1) ofH is the little group formassive particles.

Gravitational Dressing

We have just explained that any supermomentum orbit contains infinitely many
Poincaré-inequivalent sub-orbits. It is natural to wonder how the extra directions
of the orbit — those that do not lie along Lorentz generators — are to be interpreted.
In other words: how should one think of the fact that the wavefunction of a BMS3
particle leaks into directions that are forbidden by Poincaré transformations?

A natural guess is suggested by the very origin of the BMS3 group: as we showed
in Sect. 9.1, it is the asymptotic symmetry group of Minkowskian space-times (in
three dimensions). Asymptotic symmetries may be thought of as generalizations
of isometries that incorporate gravitational fluctuations. Now, the isometry group
of Minkowski space-time is the Poincaré group, and its unitary representations are
particles in the usual sense. Accordingly,

A BMS particle is a Poincaré particle
dressed with gravitational degrees of freedom.

(10.17)

Let us bemore precise about what wemean by “gravitational degrees of freedom”.
Classically, those are the classes of points on the orbitOp that cannot be obtained from
p by a Lorentz transformation; the set of these classes coincides with the double coset
space (10.16). Quantum-mechanically, we would like these gravitational degrees of
freedom to correspond to the set of quantum states that cannot be obtained from the
state of a particle at rest by Lorentz transformations. This can be rephrased in precise
terms: on the Hilbert spaceH of a BMS3 particle we define an equivalence relation
∼ such that � ∼ � ′ if there exists a Poincaré transformation ( f ,α) for which
� ′ = T [( f ,α)]�. Then the space of Poincaré-inequivalent states is the quotient

H / ∼ . (10.18)

The latter can also be seen as the set of quantum states obtained by acting on a state
at rest with supertranslations and superrotations that do not belong to the Poincaré
subgroup. In this sense it is the three-dimensional analogue of the space of soft
gravitons in four dimensions, as follows from the recently discovered relation [20,
21] between asymptotic symmetries and soft theorems in gauge theories. Thus,

A BMS particle is a particle dressed with soft gravitons.

Note that the terminology of “soft gravitons” is a bit dangerous here, since three-
dimensional Einstein gravity has no local degrees of freedom, hence no genuine
(bulk) gravitons.We already pointed out this subtlety in the introduction of the thesis,

http://dx.doi.org/10.1007/978-3-319-61878-4_9
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and our point of view remains the same: owing to the relation between soft gravitons
and asymptotic symmetries, any theory with non-trivial asymptotic symmetries can
be interpreted as a theory containing soft degrees of freedom, regardless of the
presence of bulk degrees of freedom. In this sense three-dimensional gravity is a toy
model for soft gravitons.

10.1.6 The BMS3 Vacuum

Having analysedmassive scalarBMS3 particles,we now turn to someof their cousins.
Here we describe the vacuum BMS3 representation, while spinning particles are
studied in Sect. 10.1.7.

The vacuum representation of BMS3 is the scalar induced representation based on
the vacuum supermomentum orbit— the one containing the constant pvac = −c2/24.
The corresponding little group is the Lorentz group PSL(2, R), so the orbit is

Ovac
∼= Diff(S1)/PSL(2, R). (10.19)

As before we assume that it admits a measure which is quasi-invariant under superro-
tations. The Hilbert space of the representation is then spanned by square-integrable
wavefunctions (10.8) on Ovac transforming under BMS3 according to (10.10).

The interesting aspect of the vacuum representation is its interpretation. Indeed,
while massive particles exist in both the Poincaré group and the BMS3 group, the
vacuum representation is non-trivial only in the BMS3 context. This is analogous
to the observation of Sect. 8.4 that the vacuum representation of the Virasoro group
is non-trivial. In particular, as in Virasoro, there is no fully BMS3-invariant defini-
tion of the vacuum at non-zero central charge; the maximal possibility is Poincaré
invariance, which is indeed achieved by pvac = −c2/24 (with j = 0). This reduced
symmetry is responsible for the non-triviality of the representation and for the fact
that wavefunctions of the vacuum representation “leak” into directions that cannot
be reached by Poincaré transformations. As in the massive case (10.16), the set of
Lorentz-inequivalent supermomenta on the vacuum orbit is a double coset space

PSL(2, R)\Diff(S1)/PSL(2, R) (10.20)

which parameterizes the decomposition of the vacuum BMS3 representation as a
direct integral of Poincaré sub-representations.

The presence of a non-trivial vacuum representation can be interpreted in gravita-
tional terms. Indeed, according to our heuristic proposal (10.17), the vacuum BMS3
representation consists only of gravitational degrees of freedom (since the corre-
sponding Poincaré particle is trivial). Classically these degrees of freedom span the
BMS3 orbit of the Minkowski metric. In the terminology of Sect. 8.3 those would be
“boundary gravitons”, or equivalently soft gravitons, around Minkowski space.

http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
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Dressed Particles Revisited

Let us return to the interpretation of BMS3 particles as dressed particles, now using
the vacuum representation as an extra input. We start with the following observation:
consider the space L2(M × N ,μ) of square-integrable functions on the product
spaceM×N ; suppose the measure μ factorizes as a product μ = μM ×μN , where
μM is a measure on M and μN is a measure on N . Then one has a tensor product
decomposition

L2(M × N ,μM × μN ) ∼= L2(M,μM) ⊗ L2(N ,μN ). (10.21)

Let us use this result to compare massive particles, with supermomentum orbits
Diff(S1)/S1, to the vacuum whose orbit is Diff(S1)/PSL(2, R). Since both of these
infinite-dimensional manifolds are homotopic to a point, we can relate them as

Diff(S1)/S1 ∼= (
PSL(2, R)/S1

) × (
Diff(S1)/PSL(2, R)

)
. (10.22)

This is to say that the massive supermomentum orbit is a direct product M × N .
The first factor of the product is the Poincaré momentum orbit (4.97) of a massive
particle in three dimensions, which suggests that a BMS3 particle is equivalent to
a relativistic particle “times” the vacuum BMS3 representation. This can be made
precise using (10.21): if the measure μ used to define the scalar product of wavefunc-
tions for a massive BMS3 particle factorizes into a product on Diff(S1)/PSL(2, R)

and PSL(2, R)/S1, then the Hilbert space of a massive BMS3 particle factorizes into

HBMS
∼= HPoinc ⊗ Hvac (10.23)

whereHPoinc is the space of states of a massive Poincaré particle andHvac is that of
the BMS3 vacuum representation.

One can reformulate the statement (10.23) in the basis of planewave states (10.13).
Indeed, on a massive supermomentum orbit Op = Diff(S1)/S1, the diffeomorphism
(10.22) allows us to write any supermomentum q as a pair q = (qPoinc, qvac) where
qPoinc is a momentum vector with three components belonging to the Poincaré sub-
orbit OPoinc = PSL(2, R)/S1, while qvac is a supermomentum that belongs to the
vacuum BMS3 orbit Ovac = Diff(S1)/PSL(2, R). Then, under the assumption that
the measure μ on Op disintegrates into a product of measures on PSL(2, R)/S1 and
Ovac, any plane wave (10.13) can be written as a tensor product

�k = �kPoinc ⊗ �kvac

where the left and right factors of the product are plane waves on the orbitsOPoinc and
Ovac, respectively. A generic state of a BMS3 particle is an infinite linear combination
of such factorized plane waves. Note that none of our upcoming conclusions rely on
this phenomenon, so in the sequel we will not necessarily assume that the measure
μ disintegrates into a product.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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Remark The decomposition (10.22) is similar to that of the Poincaré D-momentum
pμ = (E,p). In the latter case the truly covariant quantity is pμ but our non-relativistic
intuition splits it into an energy-momentum pair (E,p). In the same way, for BMS3
particles the truly covariant quantity is the full supermomentump(ϕ), but our intuition
splits it into a pair (pPoinc, pvac).

10.1.7 Spinning BMS3 Particles

Wefinally turn to the spinning generalization of theBMS3 representations considered
above. We have already addressed almost all the subtleties of the construction, so we
display the inclusion of spin merely for completeness. In short, our main conclusion
will be that the spin of massive BMS3 particles is not quantized, exactly as in the
Poincaré group in three dimensions. The reader who is happy to accept this result,
or to deal only with scalar particles, may go to Sect. 10.1.8.

We recall from (4.28) that spin is the label that specifies the representation of the
little group chosen for the description of a particle. In the case of BMS3 particles at
non-zero c2, the little groups were described at the end of subsection10.1.1. They
are all either one-dimensional Abelian groups such as U(1) or R (possibly up to
discrete factors), or n-fold covers of the Lorentz group PSL(2, R). All these are
finite-dimensional Lie groups and their unitary representations are known, so writing
down generic spinning representations of BMS3 is mostly a technical problem.

For definiteness, let us consider a massive BMS3 particle. Its little group U(1)
consists of spatial rotations, exactly as for massive Poincaré particles in three dimen-
sions. All irreducible unitary representations of U(1) are of the form (2.13), with s an
integer. However, the BMS3 group (9.58) has the same homotopy type as Diff(S1),
which is homotopic to a circle. This implies that it admits topological projective
representations of the type described in Sect. 2.1, which can be classified by consid-
ering exact (non-projective) representations of the universal cover (9.61) of BMS3.
In the latter case, the little group of massive particles gets unwrapped from U(1) to
R, whose unitary representations are now labelled by an arbitrary real spin s. Since
those are the physically relevant representations, we conclude that the spin of a mas-
sive BMS3 particle is generally an arbitrary real number. In particular, most massive
BMS3 particles are anyons. This is the same conclusion as in the Poincaré group in
three dimensions.

Now suppose we fix a certain value of massM and spin s ∈ R and ask what are the
states of the corresponding BMS3 particle. We denote the spin s representation of the
little group byR; it is a one-dimensional representation of the form (2.13). Thus the
Hilbert space of the BMS3 particle consists again of complex-valued wavefunctions
(10.8), but their transformation law under BMS3 contains an extra term with respect
to the scalar representation (10.10). That extra term involves the Wigner rotation
(4.31) associated with the superrotation f and the supermomentum q,

Wq[ f ] = R[g−1
q f gf −1·q] , (10.24)

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_2
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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where the superrotations gq (q ∈ Op) are standard boosts such that gq · p = q. Thus
we run into the problem of finding standard boosts for a massive supermomentum
orbit.

Incidentally we have already defined such standard boosts, though not in the same
language. Indeed, Eq. (7.44) is precisely the definition of standard boosts for elliptic
Virasoro coadjoint orbits. These boosts are built as follows:

1. Take the supermomentum q(ϕ) with central charge c2; write down the associated
Hill’s equation (7.12) with the replacement (p, c) → (q, c2).

2. Find two linearly independent solutions ψ1,ψ2 of Hill’s equation satisfying the
Wronskian condition (7.16).

3. Define a vector field Xq(ϕ) by (7.38).
4. Define a diffeomorphism f of S1 by (7.41), with p0 = M − c2/24
5. The standard boost associated with q is gq = f −1.

This procedure is somewhat convoluted, but it does provide a family of standard
boosts on the orbit of a massive supermomentum, as desired. We refrain here from
actually computing these boosts.

Equipped with standard boosts one can write down the transformation law of
massive BMS3 particles with non-zero spin, given by Eq. (4.30):

(
T [( f ,α)] · �

)
(q) =

√
ρf −1(q) ei〈q,α〉 Wq[ f ] · �(f −1 · q) ,

where the notation is the same as in (10.10) up to the insertion of theWigner rotation
(10.24). This can also be rewritten in terms of plane waves (10.13) as

T [( f ,α)] · �k =
√

ρf (k) ei〈f ·k,α〉 R
[
g−1
f ·k f gk

]
· �f ·k

(recall Eq. (4.32)). The interpretation of all these formulas is the same as before,
up to the extra Wigner rotation. In particular, a spinning BMS3 particle is a spinning
Poincaré particle dressed with soft gravitons.

10.1.8 BMS Particles in Four Dimensions?

Having described BMS particles in three dimensions, we now ask to what extent
our observations apply to the realistic four-dimensional case. To answer this we
first briefly review some previous literature on BMS in four dimensions and its
representations, before exposing our viewpoint on the matter in light of the more
recent developments relating BMS symmetry to soft theorems.3 Our approach will
be mostly qualitative and heuristic.

3To our knowledge there is, at present, no detailed review on BMS symmetry. Accordingly the
literature review provided here cannot fail to be biased by the author’s ignorance; we apologize in
advance for the references that we may have missed.

http://dx.doi.org/10.1007/978-3-319-61878-4_7
http://dx.doi.org/10.1007/978-3-319-61878-4_7
http://dx.doi.org/10.1007/978-3-319-61878-4_7
http://dx.doi.org/10.1007/978-3-319-61878-4_7
http://dx.doi.org/10.1007/978-3-319-61878-4_7
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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A History of BMS Symmetry

BMS symmetry was discovered in the sixties by Bondi, Van der Burg, Metzner [22,
23] and Sachs [24, 25], as a group (1.1) of globally well-defined diffeomorphisms
of asymptotically flat space-times. The notion of asymptotic flatness was put on
firmer ground shortly thereafter, thanks to the notion of conformal compactifications
[26]. Arguably, at the time of the discovery, the presence of an infinite-dimensional
group of supertranslations was seen as something of a pathology. Nevertheless it
was quickly suggested that full BMS symmetry (with the supertranslations turned
on) could be used to discuss aspects of both quantum gravity [27] and S-matrix
physics [24]. This led to the study of unitary representations of BMS.

The first suggestion that BMS representationsmight be relevant to particle physics
appeared in [24]. A little later McCarthy and collaborators set out to study the repre-
sentation theory of the global BMS group in full detail, with scattering amplitudes as
amotivation [28]. Owing to the semi-direct product structure of (1.1) the strategywas
to build induced representations à la Wigner in terms of orbits and little groups, as
described in this thesis in Chap.4. In particular it was shown in [29, 30] that all little
groups are compact, leading to the conclusion that BMS particles in four dimensions
cannot have continuous spin, in contrast to their Poincaré counterparts. This was fol-
lowed by the observation that the restriction of a BMS representation to its Poincaré
subgroup is reducible and consists of a tower of Poincaré particles with different
spins [31]; in [32] this spin mixing was interpreted as being due to the presence of
the gravitational field. It was also shown in [33] that certain BMS representations
studied earlier in [34, 35] were in fact reducible induced representations.

Along the way it was realized that the absence of continuous-spin particles exhib-
ited in [29, 30] was due to a delicate choice of topology, and that different topologies
lead to radically different conclusions, including particles with continuous spin [36].
These continuous-spin particles were then interpreted as scattering states in [37, 38].
Finally, the whole construction was put on firm mathematical ground in [39], where
the theory of induced representations was extended to groups of the type G �Awith
an infinite-dimensional Abelian group A. As a corollary, it was shown in [40] that
induced representations à la Wigner exhaust all irreducible unitary representations
of the global BMS group (1.1). This analysis was later completed by the proof that
the global BMS group has no non-trivial central extensions, and therefore admits no
projective representations other than those originating from its non-trivial topology
[41].

BMS Symmetry and Holography

For about two decades after McCarthy’s work on BMS representations, the study
of BMS symmetry as such appears to have slowed down, with the exception of the
discovery of its supersymmetric version in [42]. Nevertheless, substantial progress
was made during that period in closely related areas, particularly in the study of
the structure of gravity near null infinity (see e.g. [43–46]). This led for instance to
the idea of asymptotic quantization [47, 48], which can roughly be thought of as a
quantization of bulk degrees of freedom obtained by quantizing a suitable radiative

http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_1
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phase space on the boundary— an idea that sounds prophetic given the development
of holography about ten years later.

As mentioned in the introduction of this thesis, holography emerged from general
considerations on the nature of quantum gravity [49, 50] guided by the seminal
observation by Bekenstein and Hawking that black holes have entropy [51, 52].
Its best known realization occurs in the AdS/CFT duality [53–55], but it was soon
suggested that a suitable notion of holography should hold for all families of space-
times (see e.g. [56, 57]), and in particular for asymptotically flat gravity. In that
context interest in BMS symmetry slowly re-emerged [58–62], leading in particular
to the proposal [63–65] that the globally well-defined BMS group (1.1) should be
extended to include a Virasoro-like semi-group of local conformal transformations
of celestial spheres. This proposal is the origin of the terminology of “superrotations”
for asymptotic symmetry transformations that extend Lorentz transformations. The
study of asymptotically flat holography then took off, both in four dimensions [66–
70] and in three dimensions [2, 3, 71–82], although in the latter case a substantial part
of the literature is written in the language of Galilean conformal symmetry [83–97].

Along the way, it was realized by Strominger and collaborators that BMS sym-
metry does have highly non-trivial implications for the S-matrix, in the form of
soft graviton theorems [21, 98–101]. This discovery sparked a flurry of papers dis-
cussing the applications of the BMS group (and its gauge-theoretic generalizations
[20, 102–108]) to scattering amplitudes [109, 110], memory effects [111–113] and
more recently to black holes [114].

BMS4 Particles?

Despite recent progress, we still seem to be quite far from having truly understood
BMS symmetry in four dimensions. Representation theory provides an easy way to
illustrate the problem. Indeed, one of the cornerstones of the relation between BMS
symmetry and soft theorems is the fact that supertranslations generate soft graviton
states when acting on the vacuum. Accordingly, if the global BMS group (1.1) is
correct, then the representations considered by McCarthy in [29, 30] should account
for this effect: they should represent Poincaré particles dressed with soft gravitons.

However, it is easy to see that this is not the case. To illustrate this point, consider
the analogue of the global BMS group (1.1) in three dimensions,

gBMS3 ≡ PSL(2, R) � Vect(S1)Ab , (10.25)

where PSL(2, R) is the Lorentz subgroup of Diff(S1) consisting of projective trans-
formations (6.88) and acting on superrotations according to (6.17). The representa-
tions of this group would be induced exactly in the same way as for the standard
BMS3 group (9.58), but there would be two crucial differences:

• There would be no non-trivial central extensions.
• The supermomentum orbits would all be finite-dimensional (since PSL(2, R) is
finite-dimensional).

http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_1
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_9
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In particular the Hilbert space of any irreducible unitary representation of the group
(10.25) coincides with the space of states of a Poincaré particle; it consists of
wavefunctions on a finite-dimensional momentum orbit. In fact, the only differ-
ence between the representations of this group and those of Poincaré would be that
translations are pairedwith supermomenta according to the functional formula (6.34)
rather than a finite-dimensional product pμα

μ. In particular the vacuum representa-
tion would be trivial and there would be no way for quantum supertranslations to
create soft graviton states upon acting on the vacuum.

These observations exhibit an important point: the global BMS group (1.1) cannot
be the end of the story. It is too small to account for soft graviton degrees of freedom,
and it must be extended in some way. Unfortunately the argument does not tell us
how BMS symmetry should be extended. To our knowledge, two proposals have
been formulated so far, both suggesting a superrotational extension of the Lorentz
group. The first is the aforementioned idea of turning superrotations into a semi-
group of local conformal transformations of celestial spheres [63, 64, 71, 115, 116];
the second suggests that superrotations should instead span a group Diff(S2) of
diffeomorphisms of the sphere [117, 118]. It appears that there are currently no
definitive arguments for selecting one proposal over the other; see however [119],
where it is argued that finite singular conformal transformations of celestial spheres
in four dimensions are pathological.

The fact that BMS symmetry in four dimensions is ill-defined is a call for further
developments. This thesis is one of them: it aims at understanding a three-dimensional
toy model and using it as a guide for the realistic problem. Indeed, many properties
that we have encountered in our investigation of BMS3 should remain true in BMS4.
In particular the semi-direct product structure G � A appears to be a robust feature
and implies that BMS particles are classified by supermomentum orbits that coincide
with orbits of the Bondi mass aspect under asymptotic symmetry transformations.
Furthermore the occurrence of a central extension pairing superrotations with super-
translations has also been observed in BMS4 [115]. However, a sharp difference
between BMS3 and BMS4 is that, in the former, supertranslations do not create new
states when acting on the vacuum. A possibly related difference is that the language
suited to the study of BMS4 appears to be that of groupoids rather than groups. We
will not have muchmore to say about this here, and return now to our study of BMS3.

10.2 BMS Modules and Flat Limits

In the previous pageswehave described irreducible, unitary representations ofBMS3.
In order to make contact with the representation theory of the Virasoro algebra it is
useful to reformulate these representations in Lie-algebraic language, in the form of
so-called induced modules. This reformulation will also allow us to discuss the flat
limit of dressedparticles inAdS3 and to understand the difference betweenunitarity in
BMS3 and unitarity for Galilean conformal symmetry. The plan is as follows: we first
describe induced modules for the Poincaré algebra in three dimensions and interpret

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_1
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them as ultrarelativistic limits of highest-weight representations of sl(2, R), before
applying the same construction to the bms3 algebra. The presentation is adapted from
[4].

10.2.1 Poincaré Modules in Three Dimensions

Our goal here is to rewrite the three-dimensional relativistic particles of Sect. 4.3 in
Lie-algebraic language. This will allow us to relate Poincaré representations with the
ultrarelativistic limit of highest-weight representations of sl(2, R) ⊕ sl(2, R).

Poincaré Algebra

In three dimensions, the Lie algebra of the Poincaré group is spanned by three Lorentz
generators jm and three translation generators pm (m = −1, 0, 1) with Lie brackets
(9.10). As in the case (8.54) of sl(2, R), it is more convenient to use a different
complexified basis Jm = ijm, Pm = ipm, in terms of which the brackets become

[Jm, Jn] = (m−n) Jm+n , [Jm,Pn] = (m−n)Pm+n , [Pm,Pn] = 0 . (10.26)

These conventions are such that, in any unitary representation, the operators repre-
senting Poincaré generators satisfy Hermiticity conditions of the type (8.56):

(Pm)† = P−m , (Jm)† = J−m . (10.27)

As in Sect. 8.4, we abuse notation by denoting with the same letter both the abstract
generators Jm,Pn and the operators that represent them.

The Poincaré algebra has two quadratic Casimir operators: the mass squared

M2 = P2
0 − P1P−1 (10.28)

and the three-dimensional analogue of the square of the Pauli–Lubanski vector,

S = P0J0 − 1

4
(J1P−1 + J−1P1 + P1J−1 + P−1J1) . (10.29)

The eigenvalues of these operators classify irreducible representations according to
mass and spin, exactly as in Sect. 4.3. See e.g. [120] for the proof of the fact that the
operator (10.28) actually takes the value M2 in the space of states of a relativistic
particle with mass M.

Induced Modules

Irreducible unitary representations of the Poincaré group are obtained by considering
the Lorentz orbit of a momentum p and building a Hilbert space of wavefunctions on

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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that orbit. A basis of this space is provided by plane waves (10.13), where the Dirac
distribution is determined by the choice of measure on the orbit. (For instance one
can take the Lorentz-invariant measure (3.4).) Their transformation laws are given
by (10.15). Here, in order to make the link with the standard Dirac notation, we
denote such plane waves by �k ≡ |k, s〉 for any k ∈ Op, where s is the spin of the
representation.

For future comparison with bms3, we focus on a relativistic particle with mass
M > 0. Its little group U(1) consists of spatial rotations generated by J0. If we call p
the momentum of the representation in the rest frame, then the corresponding plane
wave �p ≡ |M, s〉 satisfies

P0|M, s〉 = M|M, s〉 , P−1|M, s〉 = P1|M, s〉 = 0 , J0|M, s〉 = s|M, s〉 .

(10.30)
From now on we call |M, s〉 the rest frame state of the representation. Any other
plane wave �k = |k, s〉 with boosted momentum k ∈ Op can be obtained by acting
on |M, s〉 with a Lorentz transformation gk , where gk is a standard boost. In this
sense the rest frame state determines all the properties of the representation, in the
sameway that highest-weight representations are determined by their highest-weight
state. Note, however, that the conditions (10.30) that define |M, s〉 are not of the same
form as the highest-weight conditions (8.57) in that they involve both positive and
negative modes.

Let us now understand how the conditions (10.30) induce a representation of the
Poincaré algebra. They define a one-dimensional representation of the subalgebra
generated by {Pm, J0}. This subalgebra consists of infinitesimal translations and spa-
tial rotations, i.e. it is a semi-direct sum u(1) � R

3 where u(1) is generated by J0
while R

3 is generated by the Pm’s. Thus the prescription (10.30) is a Lie-algebraic
version of the spin representation (4.28) for the case of a little group U(1) with
R[θ] = eisθ. Guided by our experience of induced representations, we can attempt
to induce a representation of the full Poincaré algebra out of the one-dimensional
representation (10.30); the result is known as an induced module (see e.g. Sect. 10.7
of [121]). We thus declare that the carrier spaceH of the representation is spanned
by all states obtained by acting on the rest frame state with operators that do not
appear in the conditions (10.30):

|k, l 〉 = (J−1)
k(J1)

l|M, s〉 , (10.31)

where k, l are non-negative integers. Such states are infinitesimally boosted states
analogous to the descendant states (8.58) that span Verma modules for the Virasoro
algebra. By definition, they form a basis of the space H . The latter provides a
Poincaré representation as it should, since acting from the left on the states (10.31)
yields linear operators onH whose commutators coincide with (10.26). Moreover,
the Casimir operators (10.28) and (10.29) have the same eigenvalue on each state
(10.31), since they commute by construction with all elements of the algebra. This
readily implies that the representation is irreducible.

http://dx.doi.org/10.1007/978-3-319-61878-4_3
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Note that unitarity is not obvious in this picture: if one did not know that the
induced module follows from a manifestly unitary representation of the Poincaré
group in terms of wavefunctions, there would be no straightforward way to define a
scalar product on the space H spanned by the states (10.31), even after enforcing
the Hermiticity conditions (10.27). In fact, the norm squared of any plane wave
state is strictly infinite because of the delta function in (10.14). This is strikingly
different from the highest-weight representations of Sect. 8.4, where the highest-
weight conditions were enough to evaluate the norm squared (8.59) of all descendant
states.

Remark The definition of the infinitesimally boosted states (10.31) follows from the
general construction of inducedmodules, as follows. Let g be a Lie algebrawith some
subalgebra h. Let S be a one-dimensional representation of h. If U(g) denotes the
universal enveloping algebra of g, then the g-module T = Indgh(S ) induced byS
is the representation of g that acts in the space U(g) ⊗ C quotiented by the relations
Y ⊗ λ = 1 ⊗ S [Y ]λ for all Y ∈ h and all λ ∈ R. For any Lie algebra element
X ∈ g, the operator T [X] acts on the carrier space by hitting on vectors from the
left, in such a way that commutators of operators T [X] reproduce the Lie brackets
of the Lie algebra g. In this language the Poincaré module above is induced by the
representation (10.30) of the semi-direct sum gp � R

3, where R

3 is the Lie algebra
of translations generated by the Pm’s while gp is the Lie algebra of the little group
generated by J0. The conditions (10.30) define a one-dimensional representationS
of gp � R

3, analogous to the spin representation (4.28).

Ultrarelativistic Limit of sl(2, R) Modules

In addition to being convenient for generalizations to infinite-dimensional extensions
of the Poincaré algebra, Poincaré modules can be seen as a limits of unitary represen-
tations of the AdS3 isometry algebra so(2, 2) ∼= sl(2, R) ⊕ sl(2, R). The generators
of the latter can be divided in two groups, Lm and L̄m with m = −1, 0, 1, whose
Lie brackets are two commuting copies of (8.55). In terms of these basis elements
the quadratic Casimir of each copy of sl(2, R) is (8.60). As usual our conventions
are such that, in any unitary representation, the Hermiticity conditions (8.56) hold in
both sectors.

The Poincaré algebra (10.26) can be recovered from sl(2, R) ⊕ sl(2, R) as a flat
limit of the type described in Sect. 9.4. Thus we introduce a length scale � (to be
identified with the AdS radius) and define new generators as in (9.87):

Jm ≡ Lm − L̄−m , Pm ≡ 1

�
(Lm + L̄−m) . (10.32)

The resulting algebra is (9.88)without i’s on the left-hand side, and its limit � → +∞
reproduces the Poincaré algebra (10.26). In addition the quadratic Casimir (8.60) can
be combined with its barred counterpart C̄, producing
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2

�2

(
C + C̄

) = M2 + O(�−2),
1

�

(
C − C̄

) = S, (10.33)

where M2 and S are the Poincaré Casimirs (10.28) and (10.29).
The matching of Casimir operators suggests that the contraction also relates

Poincaré modules to sl(2, R) ⊕ sl(2, R) representations. Concretely, consider the
tensor product of two highest-weight representations (8.57) of sl(2, R) with weights
h, h̄:

L1|h, h̄〉 = L̄1|h, h̄〉 = 0 , L0|h, h̄〉 = h|h, h̄〉 , L̄0|h, h̄〉 = h̄|h, h̄〉 . (10.34)

This yields an irreducible representation of sl(2, R)⊕sl(2, R)whose carrier space is
spanned by descendant states (L−1)

m(L̄−1)
n|h, h̄〉. Let us rewrite this representation

in terms of the operators (10.32). First we define the numbers

M ≡ h + h̄

�
, s ≡ h − h̄ , (10.35)

which are eigenvalues of energy and angular momentum:

P0|h, h̄〉 = h + h̄

�
|h, h̄〉 , J0|h, h̄〉 = (h − h̄)|h, h̄〉 (10.36)

in terms of operators (10.32). Similarly, in terms of J’s and P’s, the condition that
L1 and L̄1 annihilate the highest-weight state becomes

(
P±1 ± 1

�
J±1

)
|h, h̄〉 = 0 . (10.37)

This allows us to reformulate the whole representation of sl(2, R)⊕sl(2, R) in terms
of operators Jm,Pn; it results in expressions of the form

Pn|k, l〉 =
∑

k′,l′
P(n)
k′,l′; k,l(M, s, �)|k′, l′〉 , Jn|k, l〉 =

∑

k′,l′
J(n)
k′,l′; k,l(M, s)|k′, l′〉

(10.38)
where the states |k, l〉 take the form (10.31) with the identification |M, s〉 ≡ |h, h̄〉,
while P(n) and J(n) are infinite matrices. Owing to the definition (10.32) and property
(10.37), only negative powers of � appear in (10.38). It follows that the matrix
elements P(n)

k′,l′; k,l and J
(n)
k′,l′; k,l have a well-defined limit � → ∞. This limit coincides

with the result that one would find in a Poincaré module spanned by states (10.31),
provided that the conformal weights scale as

h = M� + s

2
+ λ + O(1/�), h̄ = M� − s

2
+ λ + O(1/�), (10.39)

http://dx.doi.org/10.1007/978-3-319-61878-4_8
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where λ is an arbitrary parameter independent of �. Thus, in the flat limit, the sl(2, R)

highest-weight conditions (10.37) are turned into a rest frame condition (10.30) and
the Poincaré Casimirs M2 and S take the values M2 and Ms, respectively. In short,
Poincaré modules are flat limits of sl(2, R) ⊕ sl(2, R) modules.

Note again that unitarity is subtle: starting from scalar products of sl(2, R) ⊕
sl(2, R) descendants, the flat limit gives rise to scalar products of states (10.31) that
diverge like positive powers of �. Indeed the norms (8.59) diverge when � → +∞,
owing to the fact that h is proportional to � in (10.39). Equivalently, the wavefunc-
tions corresponding to states (10.31) become (derivatives of) delta functions in the
flat limit; from this point of view � is an infrared regulator. Nevertheless, upon recog-
nizing these divergent scalar products as delta functions (10.14), one concludes that
the Poincaré module is a unitary representation in disguise.

Relation (10.39) shows that the contraction defined by (10.32) is an ultrarela-
tivistic/high-energy limit from the viewpoint of AdS3. Poincaré modules are thus
remnants of so(2, 2) representations whose energy becomes large in the limit � →
∞. In Sect. 10.2.3 we shall see that the non-relativistic contraction from so(2, 2) to
iso(2, 1) gives rise to representations of a different type, that have been discussed in
[122, 123].

We should mention that highest-weight representations of sl(2, R) can also be
interpreted as induced modules. Indeed Eq. (8.57) defines a one-dimensional repre-
sentation of the subalgebra spanned by {L0,L1}, while the vector space of descendant
states can be identified with a quotient of U(sl(2, R))⊗C as discussed in the remark
of page 3.15. The main difference with respect to Poincaré is the splitting of the
algebra as n− ⊕ h ⊕ n+, where n± are nilpotent subalgebras, which allows one to
evaluate scalar products by enforcing the Hermiticity conditions (8.56).

10.2.2 Induced Modules for bms3

Let us now apply the considerations of the previous pages to three-dimensional
BMS symmetry. The centrally extended bms3 algebra4 is spanned by superrotation
generators Jm and supertranslation generators Pm (m ∈ Z) together with central
charges Z1, Z2, whose Lie brackets take the form (9.68). Following the Virasoro
convention (8.63), we change the normalization and define

Jm ≡ iJm + i
Z1

24
δm,0 , Pm ≡ iPm + i

Z2

24
δm,0 , (10.40)

as well as Z1 ≡ iZ1 and Z2 ≡ iZ2. The constant shifts in P0 and J0 ensure that the
vacuum state has zero eigenvalues under these operators. According to this defini-
tion the operators representing Jm and Pm in any unitary representation satisfy the
Hermiticity conditions (10.27). Furthermore, in any irreducible representation the

4Recall that we use the same notation for both the bms3 algebra and its central extension.
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central charges Z1 and Z2 take definite values c1, c2, so we can write the commuta-
tion relations of the bms3 algebra in a form analogous to (8.65):

[Jm, Jn] = (m − n)Jm+n + c1
12

m(m2 − 1) δm+n,0 ,

[Jm,Pn] = (m − n)Pm+n + c2
12

m(m2 − 1) δm+n,0 , (10.41)

[Pm,Pn] = 0 .

In contrast to Poincaré, the quadratic operators (10.28)–(10.29) no longer com-
mute with the algebra (10.41). Nevertheless, the classification of BMS3 representa-
tions in Sect. 10.1 provides at least one obvious, yet non-trivial, Casimir operator.5

Indeed, in the Hilbert space of any BMS3 particle, the “mass operator” (10.3) takes
a definite value when M is the monodromy matrix whose trace is given by the Wil-
son loop (7.21), with c replaced by c2 and p(ϕ) replaced by the “supermomentum
operator”

p̂(ϕ) =
∑

m∈Z
Pme

−imϕ − c2
24

where thePm’s are the supertranslation generators appearing in (10.41). Accordingly,
upon writing the right-hand side of (10.3) in terms of Pm’s, one obtains a highly
non-linear combination of operators that commutes, by construction, with the entire
bms3 algebra. (That it commutes with Pm’s is trivial, since all supertranslations
commute; that it commutes with Jm’s follows from the fact that (10.3) is invariant
under superrotations.) The value of that Casimir operator can be used to classify
BMS3 particles, as we have done in Sect. 10.1.

Aside from the mass operator (10.3), any function of the BMS3 central charges
c1, c2 is clearly a Casimir. To our knowledge, whether this list exhausts all possible
bms3 Casimirs is an open question, though it seems plausible that it does since the
only Casimirs of the Virasoro algebra are functions of its central charges [124]. In
particular, it is not clear whether there exists a bms3 Casimir whose value specifies
the spin of a BMS3 particle, analogously to the Poincaré combination (10.29).

We now describe inducedmodules for the bms3 algebra (10.41), built analogously
to the Poincaré modules above and classified by their mass and spin (and central
charges). We discuss separately generic massive modules and the vacuum module,
and end by showing how they can all be obtained as ultrarelativistic limits of highest-
weight representations of Virasoro algebras.

Massive Modules

Consider a BMS3 particle with mass M > 0 and spin s. Its supermomentum orbit
contains a constant p = M−c2/24; the corresponding plane wave state�p ≡ |M, s〉
is such that

5I am indebted to Axel Kleinschmidt for this observation.
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P0|M, s〉 = M|M, s〉, Pm|M, s〉 = 0 for m �= 0, J0|M, s〉 = s|M, s〉.
(10.42)

Thus |M, s〉 is a supermomentum eigenstate with vanishing eigenvalues under Pm,
m �= 0. In analogy with (10.30), we call |M, s〉 the rest frame state of the module.

As in the Poincaré case, the conditions (10.42) define a one-dimensional repre-
sentation of the subalgebra of (10.41) spanned by {Pn, J0, c1, c2}. This representation
can be used to define an induced moduleH with basis vectors analogous to (10.31),

Jn1Jn2 · · · JnN |M, s〉, (10.43)

where the ni’s are non-zero integers such that n1 ≤ n2 ≤ · · · ≤ nN . With this
ordering, states (10.43) with different combinations of ni’s are linearly independent
within the universal enveloping algebra of bms3, and acting on them from the leftwith
the generators of the algebra provides linear operators on H whose commutators
coincide with (10.41). Thus one readily obtains a representation of the bms3 algebra.

As in the Poincaré case above, unitarity is hidden in this picture because there is
no straightforward way to compute scalar products of states (10.43). In fact, since
|M, s〉 is a delta function, all such states strictly have infinite norm. This is because
realistic states of BMS3 particles are smeared wavefunctions that consist of infinite
linear combinations of plane waves. Unitarity can then be recognized in the fact
that acting with (finite) superrotations on |M, s〉 produces a “basis” of plane waves
that generate a space of square-integrable wavefunctionals on the supermomentum
orbit. In particular the representation is automatically irreducible in the sense that
all basis states are obtained by acting with symmetry transformations on the single
state |M, s〉.

Vacuum Module

Recall that the BMS3 vacuum is the scalar representation whose supermomentum
orbit Diff(S1)/PSL(2, R) contains the vacuum configuration p = pvac = −c2/24.
The corresponding induced module can be described similarly to massive ones.
Owing to the normalization (10.40), the Hilbert space of the vacuum representation
contains a plane wave �p ≡ |0〉 such that

Pm|0〉 = 0 for all m ∈ Z and Jn|0〉 = 0 for n = −1, 0, 1. (10.44)

Here the condition P0|0〉 = 0 says that the vacuum has zero mass for the normal-
ization (10.40), while the extra conditions J±1|0〉 = 0 enforce Lorentz-invariance.
They reflect the fact that the little group of the vacuum is the whole Lorentz group,
rather than the group of spatial rotations that occurs for massive particles.

If we were dealing with the Poincaré algebra, the requirements (10.44) would
produce a trivial representation. Here, by contrast, there exist non-trivial “boosted
vacua” of the form (10.43), where now the ni’s are integers different from −1, 0, 1.
These vacua are Lie-algebraic analogues of the boundary gravitons described ear-
lier. The fact that the vacuum is not invariant under the full BMS3 symmetry, but
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only under its Poincaré subgroup, suggests that the boosted states (10.43) (with all
ni’s �= −1, 0, 1) can be interpreted as Goldstone-like states associated with broken
symmetry generators; see the discussion surrounding (8.81). Note that, in contrast to
the realistic four-dimensional case, BMS3 supertranslations do not create new states
when acting on the vacuum.

Ultrarelativistic Limit of Virasoro Modules

In analogy with the observations of Sect. 10.2.1, bms3 modules may be seen as limits
of tensor products of highest-weight representations ofVirasoro. Let thereforeLm, L̄m
be generators of two commuting copies of the Virasoro algebra (8.65) with definite
central charges c, c̄. Highest-weight representations are then obtained starting from
a primary state |h, h̄〉 which satisfies (10.34) together with

Lm|h, h̄〉 = L̄m|h, h̄〉 = 0 for m > 0. (10.45)

The carrier space is spanned by descendant states

L−n1 . . . L−nk L̄−n̄1 . . . L̄−n̄l |h, h̄〉 (10.46)

with 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk and 1 ≤ n̄1 ≤ · · · ≤ n̄l. Since we eventually wish
to take the ultrarelativistic limit of this representation, we will be interested in large
values of h and h̄, where the representation is irreducible and unitary thanks to the
standard Hermiticity conditions (8.64).

As in the Poincaré case, one can define new generators (10.32), now including
also the central charges c1, c2 defined by (9.93). In particular, the space of Virasoro
descendants can be rewritten in the basis (10.43) with the identification |M, s〉 ≡
|h, h̄〉, whereM and s are the eigenvalues of P0 and J0 related to h and h̄ by (10.35).
The change of basis from descendant states (10.46) to infinitesimally boosted states
(10.43) is invertible because none of the Jn’s annihilate the highest-weight state. The
resulting Virasoro representation takes a form analogous to (10.38), where now each
state is labelled by the quantum numbers ni of (10.43) and the matrices P(n) and J(n)

also depend on the central charges (9.93). As before, only negative powers of � enter
P(n) via the highest-weight conditions (10.45) written in the new basis:

(
P±n ± 1

�
J±n

)
|h, h̄〉 = 0. (10.47)

A limit � → ∞ performed at fixed M, s and c1, c2 (rather than fixed h, h̄ say) then
yields a massive bms3 module of the type described above. In particular, the limit
maps the highest-weight state (10.45) on the rest frame state (10.42). In this sense
bms3 modules are high-energy limits of tensor products of Virasoro modules, since
h and h̄ go to infinity in the flat limit. By the way, this provides an intuitive picture
of why the energy spectrum of BMS3 particles is continuous: the typical distance
between two consecutive eigenvalues of P0 = (L0 + L̄0)/� is 1/�, which shrinks to
zero when � goes to infinity.

http://dx.doi.org/10.1007/978-3-319-61878-4_8
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10.2.3 Representations of the Galilean Conformal Algebra

Here we revisit the Galilean conformal algebra introduced in Sect. 9.4. As explained
there, gca2 coincides with bms3, which effectively makes them classically inter-
changeable. We now argue that this equivalence does not hold at the quantum level;
this observation will be the basis of our arguments in Sect. 11.3, when explaining
why the quantization of asymptotically flat gravity cannot be a Galilean conformal
field theory. The highest-weight representations that we shall describe here were first
obtained in [122], but their identification with induced representations of BMS3 is
new.

Highest-Weight Representations of gca2

The gca2 algebra is isomorphic to bms3, but their interpretations differ: in bms3 the
non-Abelian generators generalize the angular momentum operator and span super-
rotations, while the Abelian ones generalize the Hamiltonian and span supertransla-
tions. By contrast, in gca2, the non-Abelian generators are the ones that generalize
the Hamiltonian, and the Abelian ones generalize (angular) momentum. Due to this
difference, one is naturally led to look for unitary representations of gca2 where the
operator J0 of (10.41) is bounded from below. From the BMS3 perspective this is
an awkward choice (since it explicitly breaks parity by forcing all states to have the
same sign of angular momentum), but from the Galilean viewpoint it is perfectly
well motivated.

To describe these representations we use the method of induced modules applied
to the algebra (10.41), with the Hermiticity conditions (10.27). To stress that we
are dealing with Galilean rather than relativistic representations, we denote all gca2
generators with a tilde on top, such as J̃m, P̃m, plus central charges c̃1, c̃2. In order
to obtain a representation where the spectrum of J̃0 is bounded from below, we start
from a state |M̃, s̃〉 which has highest weight for the Virasoro subalgebra generated
by J̃’s in the sense that

J̃0|M̃, s̃〉 = s̃|M̃, s̃〉, P̃0|M̃, s̃〉 = M̃|M̃, s̃〉 (10.48)

and
J̃m|M̃, s̃〉 = P̃m|M̃, s̃〉 = 0 for m > 0 . (10.49)

We stress that s̃ is now interpreted as a (dimensionless) energy while M̃ is a (dimen-
sionful) momentum. In analogy with Virasoro representations, one can then define
descendant states of the form

P̃−k1 . . . P̃−kn J̃−l1 . . . J̃−lm |M̃, s̃〉 (10.50)

with 1 ≤ k1 ≤ · · · ≤ kn, 1 ≤ l1 ≤ · · · ≤ lm, and declare that they form a basis of
the carrier space. The conditions (10.49) allow one to evaluate the would-be scalar
products of such descendants upon using the Hermiticity conditions (10.27), and one

http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_11
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finds that the representation is non-unitary whenever M̃ �= 0 or c̃2 �= 0 [122]. When
M̃ = c2 = 0, unitarity requires in addition that s̃ > 0 and that the superrotation
central charge c̃1 be non-negative. Thus, unitary representations of gca2 boil down
to highest-weight representations of its Virasoro subalgebra generated by the J̃’s.

A similar construction can be applied to a vacuum-like highest-weight representa-
tion of gca2, whose highest-weight state |0̃〉 is annihilated by all Poincaré generators
J̃−1, J̃0, J̃1, P̃−1, P̃0, P̃1 and by all positive modes as in (10.48):

P̃m|0̃〉 = 0 , J̃m|0̃〉 = 0 for m ≥ −1. (10.51)

Again, one concludes in that case that the representation is unitary if and only if
c̃2 = 0 and c̃1 ≥ 0.

The highest-weight representations of the type just described which are unitary
(i.e. have M̃ = 0 and c̃2 = 0) are special cases of induced representations of BMS3
as described in Sect. 10.1. Indeed, consider the vanishing supermomentum (p̃, c̃2) =
(0, 0). Its orbit under superrotations is trivial and its little group is the whole Virasoro
group, so the corresponding induced representation is entirely determined by its spin
s̃. The latter labels a unitary highest-weight representation of Virasoro, with central
charge c̃1 say. At the Lie-algebraic level this spin representation takes the form of
a highest-weight representation (10.48)–(10.49) with M̃ = 0 and c̃2 = 0. There is
an analogue of this construction in the Poincaré group: the vanishing momentum
vector p = 0 has a trivial orbit and its little group is the whole Lorentz group, so the
corresponding induced representation of Poincaré is just a unitary representation of
the Lorentz group; it is a “vacuum with spin” of the type mentioned in Sect. 4.2.

The difference between the BMS3 vacuum (10.44) and the Galilean vacuum
(10.51) implies sharp differences for all quantum systems enjoying such symmetries,
since it affects the definition of normal ordering. For example, the normal-ordered
product :J2P−3 : equals J2P−3 in a BMS3-invariant theory, while in aGalilean confor-
mal field theory one has : J̃2P̃−3 : = P̃−3J̃2. We shall see explicit illustrations of this
phenomenon in Sect. 11.3 below, when dealing with non-linear higher-spin symme-
try algebras. It suggests in particular that theories enjoying bms3 symmetry or gca2
symmetry differ greatly at the quantum level, despite the isomorphism bms3 ∼= gca2.

Galilean Limit of Virasoro Modules

We now recover the (generally non-unitary) Galilean highest-weight representations
defined by (10.48)–(10.49) as a non-relativistic limit of Virasoro modules. As before
we let the generators Lm, L̄n satisfy the algebra (8.65) with central charges c, c̄
respectively, and we consider a highest-weight representation of the type (10.34)–
(10.45). In order to take the non-relativistic limit (9.94), we introduce a length scale
� and define

J̃n ≡ L̄n + Ln , P̃n ≡ 1

�

(
L̄n − Ln

)
. (10.52)

We stress that the combinations of Lm’s appearing here differ from those of the
ultrarelativistic limit (10.32). In particular, J̃0 now generates time translations while
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P̃0 generates spatial translations; the parameter � should no longer be interpreted as
the AdS3 radius, and there is no mixing between positive and negative modes. In
these terms, the limit � → +∞ of the direct sum of two Virasoro algebras reduces
to a gca2 algebra (10.41) with tildes on top of all generators, including the central
charges

c̃1 = c̄ + c , c̃2 = c̄ − c

�
. (10.53)

Note that, up to central charges, the same redefinitions applied to sl(2, R)⊕ sl(2, R)

reproduce the Poincaré algebra iso(2, 1); this is a non-relativistic limit to be con-
trasted with the ultrarelativistic limit described in Sect. 10.2.1.

In analogywithSect. 10.2.2, let us rewrite the tensor product of twohighest-weight
representations of Virasoro in terms of the operators (10.52). Given the weights h, h̄
we define

s̃ ≡ h̄ + h , M̃ ≡ h̄ − h

�

which we stress is radically different from the ultrarelativistic redefinition (10.35).
Upon identifying |M̃, s̃〉 ≡ |h, h̄〉, the highest-weight state satisfies (10.48) and
(10.49). These conditions hold for any value of �, including the limit � → +∞.
The descendant states (10.50) then provide a representation of the sum of two Vira-
soro algebras, which in the non-relativistic limit � → +∞ becomes a generically
non-unitary representation of gca2. Unitarity is recovered if M̃ = c̃2 = 0 and
s̃, c̃1 ≥ 0. Again, this is strikingly different from the ultrarelativistic contraction
described above.

Remark The difference between gca2 modules and bms3 modules has been known,
albeit in disguise, ever since the nineties.Namely, the tensionless limit of string theory
gives rise to so-called null strings [125], whose worldsheet is a null surface and thus
provides a stringy generalization of null geodesics. It was observed in [126] that the
algebra of constraints arising from worldsheet reparameterization invariance of null
strings is the bms3 algebra, although the name “BMS” was not used at the time.6

In the same paper the authors observed that a suitable normal-ordering prescription
gives rise to a consistent quantization of the null string in any space-time dimension,
and systematically results in a continuous mass spectrum. This result is the stringy
analogue of the bms3 modules described in Sect. 10.2.2. Only later was it realized
that a different normal ordering prescription [128, 129] gives rise to the same critical
dimension as in standard string theory (26 for the bosonic string and 10 for the
superstring), but that the resulting spectrum is massless and discrete; in fact, the
spectrum then coincides with the massless part of the spectrum of standard string
theory. The latter result is the stringy analogue of the gca2 modules described here and
the critical dimension is analogous to the requirement c̃2 = 0 that ensures unitarity
for non-relativistic modules; see [130–132] for a recent account of these results.

6This occurrence of the bms3 algebra predates its gravitational description [127] by a decade!
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10.3 Characters of the BMS3 Group

Now that we are acquainted with BMS3 particles, we can start using them as a
computational tool. In this section we use the Frobenius formula (4.33),7

χ[( f ,α)] = Tr
(
T [( f ,α)]) =

∫

Op

dμ(k) δ(k, f · k) ei〈k,α〉χR[g−1
k f gk] , (10.54)

to evaluate characters of rotations f and supertranslations α in induced representa-
tions of the (centrally extended) BMS3 group. Remarkably, the localization effect
due to the delta function will allow us to compute characters despite the fact that
we do not know explicit measures on supermomentum orbits. We focus on massive
BMS3 particles and on the BMS3 vacuum, and compare the results to the ultrarela-
tivistic limit of Virasoro characters. The results reviewed here were first reported in
[3]; their application to partition functions [5, 6] will be exposed in the next chapter.

10.3.1 Massive Characters

We consider a BMS3 particle with mass M > 0 and spin s ∈ R, so that the little
group representation is R[θ] = eisθ. Our goal is to evaluate the character (10.54)
for arbitrary BMS3 transformations ( f ,α), along the lines described in Sect. 4.2 for
the Poincaré group. The only subtlety is that now Op

∼= Diff(S1)/S1 is an infinite-
dimensional supermomentum orbit; the gk’s of Eq. (10.54) are standard boosts and
the pairing 〈k,α〉 is given by (6.34). We assume as before that there exists a quasi-
invariant measure μ on the supermomentum orbit Op, but we stress again that
different measures yield equivalent representations so that the end result will be
independent of μ. We shall verify this point explicitly below.

The character (10.54) vanishes if f is not conjugate to an element of the little
group U(1); furthermore it is a class function, so we may take f (ϕ) = ϕ + θ to be a
pure rotation by some angle θ, without loss of generality. We assume for simplicity
that θ is non-zero; the case θ = 0 is radically different, and we shall briefly comment
about it below. When θ �= 0, the delta function δ(k, f · k) of (10.54) localizes the
supermomentum integral to the unique point ofOp that is left invariant by rotations,
namely the supermomentum at rest p = M − c2/24. This allows us to pull the little

7Here δ denotes the delta function associated by (3.39) with the measure μ.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_3
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group character χR[ f ] = eisθ out of the integral and to reduce the pairing 〈k,α〉 to
a product pα0 = Mα0 − c2α0/24, so the whole character (10.54) boils down to a
BMS3 analogue of eq. (4.55):

χ[( f ,α)] = eisθeiα
0(M−c2/24)

∫

Op

dμ(k) δ(k, f · k) . (10.55)

To evaluate the character it only remains to integrate the delta function. This
requires local coordinates on the orbit in a neighbourhood of p, which can be
obtained by Fourier-expanding each supermomentum k(ϕ) as in Eq. (6.116). The
Fourier modes kn = k∗−n then transform under rotations f (ϕ) = ϕ + θ according to

kn 
→ [
f · k]n = kn e

inθ.

As we shall see, the character that follows from this transformation is divergent due
to the fact that the group is infinite-dimensional. To cure this divergence we consider
complex rotations rather than real ones and introduce a complex parameter

τ ≡ 1

2π
(θ + iε) (10.56)

where ε > 0. We then define the transformation of supermomentum Fourier modes
under complex rotations to be

kn 
→ [
f · k]

n
=

⎧
⎨

⎩

kne2πinτ if n > 0,
k0 if n = 0,
kne2πinτ̄ if n < 0.

(10.57)

We will see below that this modification can be justified by thinking of BMS3 rep-
resentations as high-energy limits of Verma modules. Note that this prescription
leaves room for “Euclidean” rotations (i.e. rotations by an imaginary angle) while
preserving the reality condition (kn)∗ = k−n.

The problem now is to express the measure μ and the corresponding delta func-
tion δ in terms of Fourier modes. On the massive supermomentum orbit Op

∼=
Diff(S1)/S1, the non-zero Fourier modes of k(ϕ) determine its energy k0. This is
analogous to the statement that the energy of a relativistic particle is determined by

its momentum according to E =
√
M2 + k2. Let us prove this in a neighbourhood

of the supermomentum at rest, p = M − c2/24, by acting on it with an infinitesimal
superrotation X that we Fourier-expand as

X(ϕ) = i
∑

n∈Z
Xne

−inϕ.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_6
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Since the action of superrotations on supermomenta is the coadjoint representation
(6.115) of the Virasoro algebra, we find a variation

(δXp) (ϕ) =
∑

n∈Z
2n

(
M + c2

24
(n2 − 1)

)
Xne

−inϕ ≡
∑

n∈Z
δpn e

−inϕ. (10.58)

Here the variation of the zero-mode, δp0, vanishes for any choice ofX. By contrast, all
other Fourier modes are acted upon in a non-trivial way and can therefore take arbi-
trary values by a suitable choice of X. This implies that (at least in a neighbourhood
of p) the non-zero modes of supermomenta provide local coordinates onOp. In terms
of the Fourier decomposition (6.116), this is to say that when k(ϕ) = p+ε(δXp)(ϕ),
the non-zero modes kn coincide with εδpn (while k0 = p to first order in ε).

It follows that in terms of kn’s, the supermomentum measure μ of (10.55) reads

dμ(k) = (Some k − dependent prefactor) ×
∏

n∈Z∗
dkn (10.59)

where the prefactor is unknown. In quantum mechanics one would write the infinite
product

∏
n∈Z∗ dkn as a path integral measure Dk, with the extra rule that the zero-

mode of k is not to be integrated over. The definition of the delta function (3.39)
associated with μ ensures that

δ(q, k) = (Some k − dependent prefactor)−1 ×
∏

n∈Z∗
δ(qn − kn),

where the δ on the right-hand side is the usual Dirac distribution in one dimension.
Crucially, the prefactor appearing in front of the delta function is the inverse of the
prefactor of the measure (10.59). As in Eq. (4.56) this implies that the combination
dμ(k)δ(k, ·) is invariant under changes of measures, and it allows us to rewrite the
character (10.55) as

χ[( f ,α)] = eisθeiα
0(M−c2/24)

∫

R2∞

∏

n∈Z∗
dkn

∏

n∈Z∗
δ
(
kn − [

f · k]n
)

(10.57)= eisθeiα
0(M−c2/24)

∣∣∣
∣

∫

R∞

+∞∏

n=1

dkn

+∞∏

n=1

δ
(
kn(1 − e2πinτ )

)
∣∣∣
∣

2

, (10.60)

where we have replaced the real angle θ by its complex counterpart 2πτ given by
(10.56). Denoting q ≡ exp[2πiτ ] and evaluating the integral, the character of a
massive BMS3 particle finally reduces to

χ[( f ,α)] = eisθeiα
0(M−c2/24)

1
∏+∞

n=1 |1 − qn|2 . (10.61)

http://dx.doi.org/10.1007/978-3-319-61878-4_6
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We stress that this holds only provided f is conjugate to a rotation by θ. We recognize
here the ubiquitous factor (1−q)−1 arising from the Atiyah–Bott fixed point theorem
(4.61). The result can also be rewritten in terms of the Dedekind eta function (8.75),

χ[( f ,α)] = |q|1/12
|η(τ )|2 e

isθeiα
0(M−c2/24),

with |q| = 1 in the (pathological) limit ε → 0.

Remark At this stage, and in contrast to conformal field theory, the coefficient
τ should not be seen as a modular parameter. The small parameter ε in (10.56)
was merely introduced to ensure convergence of the determinant arising from the
integration of the delta function in (10.60). This being said, the occurrence of the
Dedekind eta function is compatible with the modular transformations used in [74,
87] to derive a Cardy-like formula reproducing the entropy of flat space cosmologies.

10.3.2 Comparison to Poincaré and Virasoro

Formula (10.61) extends the Poincaré character (4.98) in three dimensions. Indeed,
taking ε = 0 in (10.61) and forgetting about all convergence issues, one finds

χ[( f ,α)] = eisθeiα
0(M−c2/24)

+∞∏

n=1

1

4 sin2(nθ/2)
.

Here the term n = 1 coincides (4.98), while the contribution of higher Fourier modes
is due, loosely speaking, to the infinitely many Poincaré subgroups of BMS3. This
is analogous to the fact that the Virasoro character (8.74) may be seen as a product
of infinitely many SL(2, R) characters (5.102) labelled by an integer n.

The divergence of the BMS3 character (10.61) as ε → 0 is identical to that of the
Virasoro character (8.74) as τ becomes real. In this sense, the divergence is not a
pathology of BMS3, but rather a general phenomenon to be expected from infinite-
dimensional groups; here we have cured this divergence by adding an imaginary
part iε to the angle. The origin of this imaginary part can be traced back to the fact
that BMS3 representations are ultrarelativistic limits of Virasoro representations, as
discussed at length in Sect. 10.2.2. Indeed, suppose we are given a tensor product of
two Virasoro representations with highest weights h, h̄ and central charges c, c̄. The
corresponding character generalizes the partition function (8.80) as

Tr
(
qL0−c/24q̄L̄0−c̄/24

)
(8.74)= qh−c/24q̄h̄−c̄/24

∏+∞
n=1 |1 − qn|2 , q = e2πiτ . (10.62)

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_5
http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_8


366 10 Quantum BMS3 Symmetry

Writing the modular parameter in the form (8.78) with an �-independent β and
introducing amassM and a spin s defined by (10.35), the large � limit of the quantities
appearing in the right-hand side of (10.62) is

τ ∼ 1

2π
(θ + iε), qh−c/24q̄h̄−c̄/24 ∼ eiθ(s−c1/24)e−β(M−c2/24). (10.63)

(Here the imaginary part of τ goes to zero, but we keep writing it as ε > 0 to
reproduce the regularization used in (10.61).) Thus the flat limit of (10.62) is

lim
�→+∞Tr

(
qL0−c/24q̄L̄0−c/24

)
= eiθ(s−c1/24)e−β(M−c2/24)

1
∏+∞

n=1 |1 − qn|2 ,

and coincides (up to a redefinition of spin) with the BMS3 character (10.61) for
a supertranslation whose zero-mode is a Euclidean time translation, α = iβ. The
left-hand side of this expression can be interpreted as a trace

lim
�→+∞Tr

(
qL0−c/24q̄L̄0−c/24

)
(10.63)= Tr

(
eiθ(J0−c1/24)e−β(P0−c2/24)

) = χ[( f ,α)],
(10.64)

where f is a rotation by θ and the operators Jm, Pn are normalized so as to satisfy the
commutation relations (10.41). In this form, the matching between the flat limit of
the Virasoro character (10.62) and the BMS3 character (10.61) is manifest.

Universality of BMS3 Characters

Even though BMS3 and Virasoro characters are related by the limit just described,
they are strikingly different in that the result (10.61) holds for any value of the central
charge c2, any mass M, and any spin s. By contrast, the characters of irreducible,
unitary highest weight representations of the Virasoro algebra depend heavily on the
values of the central charge c and the highest weight h: when c ≤ 1, only certain
discrete values of c and h lead to unitary representations, and the resulting character
is not given by (10.62) [133–135]. In that sense, induced representations of the BMS3
group are less intricate than highest weight representations of the Virasoro algebra.
Since the former are high-energy, high central charge limits of the latter, this could
have been expected: all complications occurring at small c vanish when � goes to
infinity, since c scales linearly with � by assumption.

We could also have guessed that such a simplification would occur thanks to
dimensional arguments. Indeed, bothM and c2 are dimensionful parameters labelling
BMS3 representations, so their values can be tuned at will by a suitable choice of
units. Accordingly, in contrast to Virasoro highest weight representations, one should
not expect to find sharp bifurcations in the structure of BMS3 particles as M and c2
vary. In this sense formula (10.61) is a universal character.

http://dx.doi.org/10.1007/978-3-319-61878-4_8
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10.3.3 Vacuum Character

We now turn to the character of the BMS3 vacuum, that is, the scalar representation
whose supermomentum orbit is that of pvac = −c2/24. The computation is identical
to that of Sect. 10.3.1, save for the fact that the little group is the Lorentz group
PSL(2, R) rather than U(1), so the orbit Ovac

∼= Diff(S1)/PSL(2, R) has codimen-
sion three rather than one in Diff(S1).

As before, the quantity we wish to compute is χ[( f ,α)], where α is any super-
translation. Since the little group is now larger than U(1), one can obtain non-trivial
characters even when f is not conjugate to a rotation.We will not consider such cases
here and stick instead to our earlier convention that f (ϕ) = ϕ + θ is a rotation by
θ �= 0. (Equivalently we may take f to be merely conjugate to a rotation since the
character is a class function.) Then the integral of the Frobenius formula (10.54)
localizes to the unique rotation-invariant point pvac on the orbit and the character can
be written as

χvac[( f ,α)] = e−iα0c2/24
∫

Ovac

dμ(k) δ(k, f · k). (10.65)

Here μ is some quasi-invariant measure on the vacuum orbit. Using Fourier expan-
sions (6.116), we can think of Fourier modes as redundant coordinates on the orbit;
the subtlety is to understand which of these modes should be modded out so as to
provide genuine, non-redundant local coordinates on Ovac.

As in the case of massive characters we work in a neighbourhood of the rest frame
supermomentum pvac and rely on the action (10.58) of infinitesimal superrotations.
Taking M = 0 in that equation, we now find that all three modes δp1, δp0 and δp−1

vanish for any choice of X. This is an infinitesimal restatement of the fact that the
little group is PSL(2, R). Thus, in a neighbourhood of pvac, we can use the higher
Fourier modes pn with |n| ≥ 2 as local coordinates. In particular the measure μ now
takes the form

dμ(k) = (Some k − dependent prefactor) ×
+∞∏

n=2

dkndk−n ,

where the prefactor is again unknown, but eventually irrelevant since it is cancelled
by the prefactor of the corresponding delta function. The vacuum character (10.65)
thus boils down to

χvac[( f ,α)] = e−iα0c2/24
∫

R2∞−2

+∞∏

n=2

dkndk−n

+∞∏

n=2

δ(kn − [f · k]n)δ(k−n − [f · k]−n)

(10.57)= e−iα0c2/24
∣∣∣
∣

∫

R∞−1

+∞∏

n=2

dkn

+∞∏

n=2

δ
(
kn(1 − qn)

)
∣∣∣
∣

2

,
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where q ≡ exp[2πiτ ] and τ = (θ + iε)/2π contains an imaginary part ε that regular-
izes the divergence of the infinite product. Integrating the delta functions and taking
into account the determinant, we finally obtain

χvac[( f ,α)] = e−iα0c2/24
1

∏+∞
n=2 |1 − qn|2 . (10.66)

Note the truncated product starting at n = 2, which reflects Lorentz-invariance. As
in the massive case above, this expression can be interpreted as a trace (10.64), now
taken in the Hilbert space of the vacuum representation. It can also be recovered as
a flat limit of the product of two Virasoro vacuum characters (8.77).

Remark In this section we have systematically assumed that f is a rotation by some
non-zero angle θ. In doing so we have left aside the interesting problem of comput-
ing characters of pure supertranslations. This includes for instance Euclidean time
translations, whose characters coincide with canonical partition functions of BMS3
particles. Analogously to the Poincaré results (4.68) or (4.99), all such characters
are infrared-divergent and rely on an integral taken over the whole supermomentum
orbit, due to the lack of a localizing delta function. We will not attempt to evaluate
these characters here.
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Chapter 11
Partition Functions and Characters

The asymptotic symmetries described in Chap.9 suggest that the quantization of
asymptotically flat gravitational fields in three dimensions provides unitary repre-
sentations of BMS3. In particular, it should be possible to identify BMS3 particles
with quantized gravitational fluctuations around suitable background metrics. The
purpose of this chapter is to confirm this identification by matching one-loop parti-
tion functions of gravity with BMS3 characters. As a by-product, the method of heat
kernels that we shall use for this computation also allows us to evaluate partition
functions for fields with arbitrary spin, which will lead us to higher-spin extensions
of BMS3 symmetry. As we will show, the resulting irreducible unitary represen-
tations can be classified analogously to the BMS3 particles of Chap. 10, and their
characters match one-loop partition functions of combinations of higher-spin fields
in three-dimensional Minkowski space.

The plan is as follows.We start in Sect. 11.1 by evaluating one-loop partition func-
tions of free fieldswith arbitrarymass and spin in D-dimensionalMinkowski space at
finite temperature and angular potentials. We show that the result is an exponential of
Poincaré characters which, for spin two in D = 3, coincides with the vacuum BMS3
character (10.66). In Sect. 11.2 we extend this matching to higher-spin theories in
three dimensions by describing a method for obtaining induced irreducible unitary
representations of the corresponding asymptotic symmetry groups. Section11.3 is
devoted to the Lie-algebraic counterpart of that method, which we compare to ear-
lier proposals in the literature [1]. We show in particular that ultrarelativistic and
non-relativistic limits of quantumW algebras differ, which singles out induced rep-
resentations as the correct approach to flat space holography. Finally, in Sect. 11.4
we define supersymmetric extensions of the BMS3 group, describe their irreducible
unitary representations and show that their characters coincide with one-loop parti-
tion functions of asymptotically flat hypergravity. Sections “From Mixed Traces to
Bosonic Characters” and “From Mixed Traces to Fermionic Characters” are techni-
cal appendices that summarize computations related to SO(n) characters which are
useful for Sects. 11.1 and 11.4, respectively.

© Springer International Publishing AG 2017
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The results described in this chapter first appeared in [2–4]. They areMinkowskian
analogues of earlier observations on partition functions inAdS3 [5–7] that we already
referred to in Sect. 8.4. Note that our language in this chapter will be somewhat
different than in the previous ones, as we will rely much more heavily on quantum
field theory. On the other hand the group-theoretic tools that we will be using are
essentially the same as in Chap.10.

11.1 Rotating Canonical Partition Functions

Wewish to study one-loop partition functions of higher-spin fields in D-dimensional
Minkowski space at finite temperature 1/β, and with non-zero angular potentials. As
in Sect. 4.2, we denote these potentials by �θ = (θ1, . . . , θr ), where r = �(D− 1)/2�
is the rank of SO(D − 1), that is, the maximal number of independent rotations in
(D−1) space dimensions; we assume D ≥ 3. The computation involves a functional
integral over fields living on a quotient of R

D , where the easiest way to incorporate
one-loop effects is the heat kernel method. Accordingly we now briefly review this
approach, before applying it to bosonic fields and rewriting the resulting partition
function as an exponential of Poincaré characters; for spin two and D = 3, the result
coincides with the vacuum BMS3 character. Fermions will be treated separately in
Sect. 11.4.1.

11.1.1 Heat Kernels and Method of Images

Our goal is to evaluate partition functions of the form

Z(β, �θ ) =
∫

Dφ e−S[φ] (11.1)

where φ is some collection of fields (bosonic or fermionic) defined on a thermal quo-
tient R

D/Z of flat Euclidean space, satisfying suitable (anti)periodicity conditions.
(The explicit action of Z on R

D , with its dependence on β and �θ, will be displayed
below — see Eq. (11.7).) The functional S[φ] is a Euclidean action for these fields.
Expression (11.1) can be evaluated perturbatively around a saddle point φc of S,
leading to the semi-classical (one-loop) result

Z(β, �θ ) ∼ e−S[φc]
[
det

(
δ2S

δφδφ

)∣∣∣∣
φc

]#

(11.2)

where the exponent # depends on the nature of the fields that were integrated out.
The quantity δ2S/δφ(x)δφ(y) appearing in this expression is a differential operator

http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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acting on sections of a suitable vector bundle over R
D/Z. The evaluation of the

one-loop contribution to the partition function thus boils down to that of a functional
determinant.

After gauge-fixing, such determinants reduce to expressions of the formdet(−�+
M2), where � is a Laplacian operator on R

D/Z. These, in turn, can be evaluated
thanks to the method of heat kernels. In short (see e.g. [5, 8] for details), one can
express det(−� + M2) on R

D as an integral

− log det(−� + M2) =
∫ +∞

0

dt

t

∫
RD

dDx Tr [K (t, x, x)] , (11.3)

up to an ultraviolet divergence that can be regularized with standard methods. Here
K (t, x, x ′) is a matrix-valued bitensor known as the heat kernel associated with
(−� + M2). It satisfies the heat equation

∂

∂t
K (t, x, x ′) − (�x − M2) K (t, x, x ′) = 0 , (11.4)

with the initial condition

K (t = 0, x, x ′) = δ(D)(x − x ′) I (11.5)

where I is an identity matrix having the same tensor structure as K (here omitted for
brevity)while δ(D) is theDirac delta function associatedwith the translation-invariant
Lebesgue measure on R

D .
Heat kernels are well suited for the computation of functional determinants on

quotient spaces. Indeed, suppose � is a discrete subgroup of the isometry group
of R

D , acting freely on R
D . Introducing the equivalence relation x ∼ y if there

exists a γ ∈ � such that γ(x) = y, we define the quotient manifold R
D/� as the

corresponding set of equivalence classes. Given a differential operator � on R
D ,

it naturally induces a differential operator on R
D/�, acting on fields that satisfy

suitable (anti)periodicity conditions. Because the heat Eq. (11.4) is linear, the heat
kernel on the quotient space can be obtained from the heat kernel on R

D by the
method of images:

KR
D/�(t, x, x ′) =

∑
γ ∈ �

K
(
t, x, γ(x ′)

)
. (11.6)

Here, abusing notation slightly, x and x ′ denote points both in R
D and in its quotient.

In writing (11.6) we are assuming, for simplicity, that the tensor structure of K is
trivial, but as soon as K carries tensor or spinor indices (i.e. whenever the fields
under consideration have non-zero spin), the right-hand side involves Jacobians that
account for the non-trivial transformation law of K . Once KR

D/Z is known, the
determinant of the operator −� + M2 is given by (11.3) with K replaced by KR

D/Z

and R
D replaced by R

D/Z.
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Fig. 11.1 The quotient
space R3/Z defined by
identifications of R3

generated by the group
action (11.7); β is an inverse
temperature while θ is an
angular potential

We shall be concernedwith thermal quantum field theories on rotatingMinkowski
space, so we define our fields on a quotient RD/Z of Euclidean space with the action
of Z obtained as follows. For odd D, we endow R

D with Cartesian coordinates
(xi , yi ) (where i = 1, . . . , r ) and a Euclidean time coordinate τ , so that an integer
n ∈ Z acts on R

D according to (see Fig. 11.1)

γn

(
xi
yi

)
=
(
cos(nθi ) − sin(nθi )
sin(nθi ) cos(nθi )

)
·
(
xi
yi

)
≡ R(nθi ) ·

(
xi
yi

)
, γn(τ ) = τ + nβ .

(11.7)

For even D we add one more spatial coordinate z, invariant under Z. In terms of the
coordinates {x1, y1, . . . , xr , yr , τ } (and also z if D is even), the Euclidean Lorentz
transformation implementing the rotation (11.7) is the nth power of the rotation
matrix

J =

⎛
⎜⎜⎜⎜⎝

R(θ1) 0 · · · 0

0
. . . 0

...
... 0 R(θr ) 0
0 · · · 0 1

⎞
⎟⎟⎟⎟⎠ or

⎛
⎜⎜⎜⎜⎜⎜⎝

R(θ1) 0 · · · 0 0

0
. . . 0

... 0
... 0 R(θr ) 0 0
0 · · · 0 1 0
0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.8)

for D odd or D even, respectively. Being isometries of flat space, these transforma-
tions are linear maps in Cartesian coordinates, so their nth power coincides with the
Jacobian matrix ∂γn(x)μ/∂xν that will be needed later for the method of images.
Throughout this chapter we take all angles θ1, . . . , θr to be non-vanishing and com-
bine them in a vector �θ = (θ1, . . . , θr ). We now display the computation of one-loop
partition functions on R

D/Z for bosonic higher-spin fields.

11.1.2 Bosonic Higher Spins

Here we study the rotating one-loop partition function of a free bosonic field with
spin s andmass M (including the massless case). For M > 0 its Euclidean action can
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be presented either (i) using a symmetric traceless field φμ1...μs of rank s together with
a tower of auxiliary fields of ranks s − 2, s − 3, . . . , 0 that do not display any gauge
symmetry [9]; or (ii) using a set of doubly traceless fields of ranks s, s − 1, . . . , 0
subject to a gauge symmetry generated by traceless gauge parameters of ranks s −
1, s − 2, . . . , 0 [10]. In the latter case, the action is a sum of Fronsdal actions [11]
for each of the involved fields, plus a set of cross-coupling terms with one derivative
proportional to M , and a set of terms without derivatives proportional to M2. In the
massless limit, all these couplings vanish and one can consider independently the
(Euclidean) Fronsdal action for the field of highest rank:

S[φμ1...μs ] = −1

2

∫
dDx φμ1...μs

(
Fμ1...μs − 1

2
δ(μ1μ2Fμ3...μs )λ

λ

)
, (11.9)

where indices are raised and lowered thanks to the Euclidean metric, while

Fμ1···μs ≡ �φμ1...μs − ∂(μ1|∂
λφ|μ2...μs )λ + ∂(μ1∂μ2φμ3...μs )λ

λ . (11.10)

Parentheses denote the symmetrization of the indices they enclose,with theminimum
number of terms needed and without any overall factor. The massless action (11.9)
has a gauge symmetry φμ1...μs �→ φμ1...μs + ∂(μ1ξμ2...μs ), where ξμ2...μs is a symmetric
tensor field. When s = 2 the action reduces to that of a metric perturbation hμν

around a flat background. We refer for instance to [12] for many more details on this
topic.

Massive Case

Applying e.g. the techniques of [7] to the presentation of the Euclidean action of a
massive field of spin s of [10], one finds that the partition function is given by

log Z = − 1

2
log det(−�(s) + M2) + 1

2
log det(−�(s−1) + M2) , (11.11)

where �(s) is the Laplacian ∂μ∂
μ acting on periodic,1 symmetric, traceless tensor

fields with s indices on R
D/Z. We denote the heat kernel associated with (−�(s) +

M2) on R
D by Kμs ,νs (t, x, x

′), where μs and νs are shorthands that denote sets of
s symmetrized indices. The differential equation (11.4) with initial condition (11.5)
for Kμs ,νs (t, x, x

′) then reads

(�(s) − M2 − ∂t )Kμs , νs = 0 , Kμs , νs (t = 0, x, x ′) = Iμs , νsδ
(D)(x − x ′) , (11.12)

where Iμs ,νs is an identity matrix with the same tensor structure as Kμs ,νs . Sets of
repeated covariant or contravariant indices denote sets of indices that are symmetrized
with theminimumnumber of terms required andwithoutmultiplicative factors, while
contractions involve as usual a covariant and a contravariant index. For instance the
tracelessness condition on the heat kernel amounts to

1More precisely, the field at time τ + β is rotated by �θ with respect to the field at time τ .
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δμμKμs , νs = δννKμs , νs = 0 . (11.13)

The unique solution of (11.12) fulfilling this condition is

Kμs , νs (t, x, x
′) = 1

(4πt)D/2
e−M2t− 1

4t |x−x ′ |2
Iμs , νs (11.14)

where |x − x ′| is the Euclidean distance between x and x ′, while the spin-s identity
matrix is

Iμs , νs =
� s
2 �∑

n=0

(−1)n2nn! [D + 2(s − n − 2)]!!
s! [D + 2(s − 2)]!! δnμμδ

s−2n
μν δnνν . (11.15)

Note that the dependence of this heat kernel on the space-time points x , x ′ and on
Schwinger proper time t is that of a scalar heat kernel, and completely factorizes
from its spin/index structure which is entirely accounted for by the matrix I.2 This
simplification is the reason why heat kernel computations are simpler in flat space
than in AdS or dS.

To determine the heat kernel associated with the operator (−�(s)+M2) onR
D/Z,

we use the method of images (11.6), taking care of the non-trivial index structure.
Denoting thematrix (11.8) by Jα

β (it is the Jacobian of the transformation x �→ γ(x)),
the spin-s heat kernel on the quotient space R

D/Z is

KR
D/Z

μs , νs
(t, x, x ′) =

∑
n ∈Z

(J n)α
β
. . . (J n)α

βKμs , βs

(
t, x, γn(x ′)

)
, (11.16)

where we recall again that repeated covariant or contravariant indices are meant to be
symmetrized with theminimum number of terms required andwithout multiplicative
factors, while repeating a covariant index in a contravariant position denotes a con-
traction. Accordingly, Eq. (11.3) gives the determinant of (−�(s) + M2) on R

D/Z:

− log det(−�(s) + M2) =
∫ +∞

0

dt

t

∫
RD/Z

dDx (δμα)s KR
D/Z

μs , αs
(t, x, x)

=
∑
n ∈Z

(J n)μβ · · · (J n)μβ
Iμs ,βs

∫ +∞

0

dt

t

∫
RD/Z

dDx
1

(4πt)D/2
e−M2t− 1

4t |x−γn(x)|2 .

(11.17)

In this series the term n = 0 contains both an ultraviolet divergence (due to the
singular behaviour of the integrand as t → 0) and an infrared one (due to the integral
of a constant over R

D/Z), proportional to the product βV where V is the spatial
volume of the system. This divergence is a quantum contribution to the vacuum

2Note also that the scalar heat kernel coincides with the propagator of a free particle in R
D , whose

expression for D = 2 was written in Eq. (5.158).

http://dx.doi.org/10.1007/978-3-319-61878-4_5
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energy, which we ignore from now on. The only non-trivial one-loop contribution
then comes from the terms n 
= 0 in (11.17). Using

|x − γn(x)|2 = n2β2 +
r∑

i=1

4 sin2(nθi/2)(x
2
i + y2i )

in terms of the coordinates introduced around (11.7), the integrals over t and x give
rise to a divergent series

− log det(−�(s) + M2) =
∑
n ∈Z∗

1

|n|
χs[n �θ ]

r∏
j=1

|1 − einθ j |2
×
{
e−|n|βM if D odd,
ML
π
K1(|n|βM) if D even,

(11.18)

where K1 is the first modified Bessel function of the second kind, L ≡ ∫ +∞
−∞ dz is

an infrared divergence (4.64) that arises in even dimensions because the z axis is left
fixed by the rotation (11.8), and

χs[n �θ ] ≡ (J n)μβ . . . (J n)μβ
Iμs , βs ≡ [

(J n)μβ
]s

Iμs , βs (11.19)

is the full mixed trace of Iμs ,νs . As such, expression (11.18) makes no sense because
the sum over n diverges. To cure this problem, one needs to choose a regularization
procedure. Motivated by the similar situation already encountered in Eq. (10.56), for
now we choose to regulate the series by a naive replacement: we let ε j , j = 1, . . . , r
be small positive parameters and replace θ j by θ j ± iε j in all positive powers of
e±iθ j . As a result, expression (11.18) is replaced by the convergent series

− log det(−�(s)+M2) =
∑

n ∈Z∗

1

|n|
χs [n�θ, �ε ]

r∏
j=1

|1 − ein(θ j+iε j )|2
×
{
e−|n|βM if D odd,
ML
π K1(|n|βM) if D even,

(11.20)

where χs[n �θ, �ε ] is still given by (11.19), except that now all factors e±iθ j appearing
in the Jacobians are replaced by e±i(θ j±iε j ).

The regularization described here is motivated by the fact that, for odd D, the
resulting expressions look very much like flat limits of AdS one-loop determinants,
in which case the parameters ε j ∝ β/� are remnants of the inverse temperature (with
� the AdS radius). The subtlety, however, is that the exact matching of the flat limit
of AdS with combinations such as (11.20) requires some of the ε j ’s to be multiplied
by certain positive coefficients; thus Eq. (11.20) is not quite the same as the flat limit
of its AdS counterpart — we will illustrate this point for D = 3 in Sect. 11.1.3.
As for even values of D, the situation is even worse since the flat limit of the AdS
result contains an infrared divergence; it is not obvious how this divergence can be
regularized so as to reproduce the combination L · K1 of (11.20), though apart from
this the other terms of the expression indeed coincide with the flat limit of their

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_10
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AdS counterparts. From now on we will use the iε prescription systematically, often
omitting to indicate it explicitly. We will keep it only in the final results, and in
Sect. 11.1.3 we will introduce a refined regularization such that partition functions
in D = 3 exactly reproduce characters of suitable asymptotic symmetry algebras,
while also matching the flat limit of their AdS peers.

In Eq. (11.20), the divergence as ε j → 0 is the same as in the BMS3 character
(10.61). The new ingredient is the angle-dependent trace (11.19); in Appendices sec-
tions “Mixed Traces and Symmetric Polynomials” and “Symmetric Polynomials and
SO (D) Characters” we show that the latter is the character of an irreducible, unitary
representation of SO(D) with highest weight λs ≡ (s, 0, . . . , 0). More precisely, let
Hi denote the generator of rotations in the plane (xi , yi ), in the coordinates defined
around (11.7). Then the Cartan subalgebra h of so(D) is generated by H1, . . . , Hr ,
plus, if D is even, a generator of rotations in the plane (τ , z). Denoting the dual basis
of h∗ by L1, . . . , Lr (plus possibly Lr+1 if D is even), we can consider the weight
λs = sL1 whose only non-zero component (in the basis of Li ’s) is the first one. The
character of the corresponding highest-weight representation of so(D) coincides
with expression (11.127):

χs[n �θ ] = χ(D)

λs
[nθ1, . . . , nθr ] or χ(D)

λs
[nθ1, . . . , nθr , 0] , (11.21)

for D odd or even, respectively. From now on, χ(n)

λ denotes a character of SO(n)

with highest weight λ.
We can now display the one-loop partition function (11.11). Using expression

(11.20) for the one-loop determinant together with property (11.21), we find

Z(β, �θ ) = exp

⎡
⎢⎢⎢⎣

+∞∑
n=1

n−1

r∏
j=1

|1 − einθ j |2
×
⎧⎨
⎩
(
χ

(D)
λs

[n�θ ] − χ
(D)
λs−1

[n�θ ]
)
e−nβM(

χ
(D)
λs

[n�θ, 0] − χ
(D)
λs−1

[n�θ, 0]
)
ML
π K1(nβM)

⎤
⎥⎥⎥⎦

(11.22)

where the upper (resp. lower) line corresponds to the case where D is odd (resp.
even). Remarkably, the differences of SO(D) characters appearing here can be sim-
plified: according to Eqs. (11.154a) and (11.155), the difference of two SO(D) char-
acters with weights (s, 0, . . . , 0) and (s − 1, 0, . . . , 0) is a (sum of) character(s) of
SO(D − 1):

χ(D)

λs
[�θ ] − χ(D)

λs−1
[�θ ] (D odd)

χ(D)

λs
[�θ, 0] − χ(D)

λs−1
[�θ, 0] (D even)

}
= χ(D−1)

λs
[�θ ] . (11.23)

Since the rank of SO(D−1) is r = �(D−1)/2�, the right-hand side of this equality
makes sense regardless of the parity of D, and the partition function (11.22) boils
down to

http://dx.doi.org/10.1007/978-3-319-61878-4_10
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Z(β, �θ ) = exp

⎡
⎢⎢⎢⎣

+∞∑
n=1

1

n

χ(D−1)
λs

[n �θ, �ε ]
r∏
j=1

|1 − ein(θ j+iε j )|2
×
{
e−nβM (D odd)
ML
π
K1(nβM) (D even)

⎤
⎥⎥⎥⎦ .

(11.24)

Note that the function of n �θ and nβ appearing here in the sum over n is essentially
the character (4.60)–(4.65) of a Poincaré particle with mass M and spin λs ; we will
return to this observation in Sect. 11.1.4. An analogous result holds in Anti-de Sitter
space [13–15].

Massless case

Wenow turn to the one-loop partition function associatedwith theEuclideanFronsdal
action (11.9), describing amasslessfieldwith spin s. The extra ingredientwith respect
to themassive case is the gauge symmetryφμ1...μs �→ φμ1...μs +∂(μ1ξμ2...μs ). This forces
one to fix a gauge and introduce ghost fields that absorb the gauge redundancy [7],
which adds two more functional determinants to the massive result (11.11) and leads
to the following expression for the one-loop term of the partition function:

log Z = −1

2
log det(−�(s)) + log det(−�(s−1)) − 1

2
log det(−�(s−2)) . (11.25)

As before, �(s) is the Laplacian on R
D/Z acting on periodic, traceless, symmetric

fields with s indices. The functional determinants can be evaluated exactly as in the
massive case, upon setting M = 0. In particular, using limx→0 xK1(x) = 1, the
massless version of the functional determinant (11.20) is

− log det(−�(s)) =
∑
n ∈Z∗

1

|n|
χs[n �θ, �ε ]

r∏
j=1

|1 − ein(θ j+iε j )|2
×
{
1 if D odd,

L
π|n|β if D even,

(11.26)

which has been regularized as in the massive case. The matching (11.21) between χs

and a character of SO(D) remains valid, but a sharp difference arises upon including
all three functional determinants in (11.25). Indeed, the combination of χs’s now is

χs[n �θ ] − 2χs−1[n �θ ] + χs−2[n �θ ] (11.21)–(11.23)= χ(D−1)
λs

[n �θ ] − χ(D−1)
λs−1

[n �θ ] . (11.27)

It is tempting to use (11.23) once more to rewrite this as a character of SO(D − 2),
and indeed this is exactly what happens for even D because in that case the rank of
SO(D − 1) equals that of SO(D − 2):

Z(β, �θ ) = exp

⎡
⎢⎢⎢⎣

+∞∑
n=1

1

n

χ(D−2)
λs

[n �θ, �ε ]
r∏
j=1

|1 − ein(θ j+iε j )|2
L

πnβ

⎤
⎥⎥⎥⎦ (even D). (11.28)

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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If D is odd, however, the rank decreases by one unit in going from SO(D − 1) to
SO(D − 2), so expression (11.27) contains one angle too much to be a character of
SO(D − 2). In fact, when D = 3, the right-hand side of (11.27) is the best we can
hope to get; for s ≥ 2 it takes the form

χ(1)
λs

[nθ] ≡ χ(2)
λs

[nθ] − χ(2)
λs−1

[nθ] = eisnθ − ei(s−1)nθ + c.c. (11.29)

where we have used the character χs[θ] = eisθ + e−isθ for parity-invariant unitary
representations of SO(2) and “c.c.” means “complex conjugate”. (For lower spins
one has χ(1)

λ0
[θ] ≡ 1 and χ(1)

λ1
[θ] ≡ 2 cos θ − 1.) Hence the partition function given

by (11.25) becomes

Z(β, θ) = e−S(0)
exp

[+∞∑
n=1

1

n

1

|1 − ein(θ+iε)|2
(
eisn(θ+iε) − ei(s−1)n(θ+iε) + c.c.

)]
(D = 3)

(11.30)

upon using the crude regularization described below Eq. (11.20). For the sake of
generality we have included a spin-dependent classical action S(0), whose value is
a matter of normalization and is generally taken to vanish, except for spin two (see
below). In the more general case where D is odd and larger than three, a simplifica-
tion does occur on the right-hand side of (11.27): as we show in Appendix section
“Differences of SO(D)Characters”, the difference (11.27) can be written as a sum of
SO(D−2) characters with angle-dependent coefficients (see Eq. (11.154b)). Indeed,
let us define

Ar
k(

�θ ) ≡ | cos((r − i)θ j )|θk=0

| cos((r − i)θ j )| , k = 1, . . . , r, (11.31)

where |Ai j | denotes the determinant of an r × r matrix. Then the rotating one-
loop partition function for a massless field with spin s in odd space-time dimension
D ≥ 5 reads

Z(β, �θ ) = exp

⎡
⎢⎢⎢⎣

+∞∑
n=1

1

n

r∑
k=1

Ar
k(n

�θ, �ε ) χ
(D−2)
λs

[nθ1, . . . , n̂θk , . . . , nθr , �ε ]
r∏
j=1

|1 − ein(θ j+iε j )|2

⎤
⎥⎥⎥⎦ (odd D ≥ 5),

(11.32)
where the hat on top of an argument denotes omission.

Note that the massless partition functions (11.28) and (11.32) are related to the
massless limit of (11.24). Indeed, as we show in Appendix section “From SO(D) to
SO (D − 1)”, it turns out that

χ(D−1)
λs

[�θ ] =
s∑

j=0

{∑r
k=1 Ar

k(
�θ )χ(D−2)

λ j
[θ1, . . . , θ̂k, . . . , θr ] for odd D,

χ(D−2)
λ j

[�θ ] for even D.
(11.33)

Accordingly, themassless limit of amassive partition functionwith spin s is a product
of massless partition functions with spins ranging from 0 to s,
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lim
M→0

ZM,s =
s∏

j=0

Zmassless, j , (11.34)

consistently with the structure of the massive action [10]. This result stresses again
the role of the functions Ar

k(
�θ ) defined in (11.31): when the space-time dimension

is odd, one needs angle-dependent coefficients because the rank of the little group
of massless particles is smaller than the maximum number of angular velocities,
so that a single SO(D − 2) character cannot account for all of them. By the way,
the results (11.33) and (11.34) also hold in dimension D = 3, provided one takes
the “characters” χ(1)

λs
[θ] to be of the form (11.29) with χ(1)

λ0
[θ] = 1 and χ(1)

λ1
[θ] =

2 cos θ − 1.

11.1.3 Partition Functions and BMS3 Characters

Let us rewrite the three-dimensional partition function (11.30) in a form more con-
venient for the group-theoretic discussion of the remainder of this chapter. As men-
tioned above, the only non-trivial step will be to slightly modify the iε regularization.
Namely, instead of the combination of exponentials appearing in (11.30), consider
the expression

eisn(θ+iε) − ei(s−1)nθ−(s+1)nε + c.c. (11.35)

Writing q ≡ ei(θ+iε) and plugging (11.35) into the sum over n of Eq. (11.30), one
obtains the series

+∞∑
n=1

1

n

qns − qnsq̄n + c.c.

|1 − qn|2 =
+∞∑
n=1

1

n

(
qns

1 − qn
+ c.c.

)
= −

+∞∑
j=s

log(1 − q j ) + c.c.

(11.36)
where the new regularization (11.35) has ensured that the summand decomposes as
the sum of a chiral and an anti-chiral piece in q. (This was not the case with the rough
regularization of Eq. (11.20)!) In order to write down the full partition function, it
only remains to assign a value to the classical action S(0); a convention that has come
to be standard in the realm of three-dimensional gravity is to set S(0) = 0 for any spin
s 
= 2 (vacuum expectation values are assumed to vanish), while S(0) = −β/8G
for spin two (with G the Newton constant in three dimensions). This choice ensures
covariance of the on-shell action under modular transformations [2, 16], in analogy
with the similar choice in AdS3 [5]. All in all, combining the value of S(0) with the
series (11.36) and renaming j into n, one finds that the three-dimensional partition
function (11.30) can be written as

Z(β, θ) = eδs,2
βc2
24

+∞∏
n=s

1

|1 − ein(θ+iε)|2 , c2 = 3/G. (11.37)
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This expression is the flat limit of the analogous higher-spin partition function in
AdS3 [7]. But most importantly for our purposes, taking s = 2 in this formula, we
recognize the vacuumBMS3 character (10.66). This is our first key conclusion in this
chapter: it confirms that boundary gravitons in flat space form an irreducible unitary
representation of the BMS3 group of the type described in Chap.10. The case s > 2
will be studied in Sect. 11.2, with similar conclusions.

The result (11.37) can be generalized to orbifolds in flat space: upon declaring that
the angular coordinate ϕ of (9.4) is identified as ϕ ∼ ϕ + 2π/N with some integer
N > 1, one obtains a flat three-dimensional conical deficit. One can then evaluate
heat kernels on that background by computing a sum over images (11.6), where �

is now a group Z × ZN whose two generators enforce (i) the thermal identifications
(11.7), and (ii) the orbifolding ϕ ∼ ϕ + 2π/N . An important technical subtlety
is that, in order to evaluate a partition function with temperature 1/β and angular
potential θ on that background, the angle appearing in (11.7) must be θ/N rather
than θ. The rest of the computation is straightforward, and one finds that the one-loop
partition function of gravity can be written as

ZN (β, θ) = e−β p0
+∞∏
n=1

1

|1 − ein(θ+iε)|2 ,

where p0 = −c2/(24N 2). Comparing with (10.61), we recognize the (Euclidean)
character of a BMS3 particle with mass M = c2

24 (1 − 1/N 2), which is indeed the
mass one would obtain by writing the conical deficit metric in BMS form (9.25).
Note in particular that the sum over images of the orbifolding group ZN converts the
truncated product of (11.37) into a full product

∏+∞
n=1(· · · ).

The result (11.37) first appeared in [2] and parallels earlier observations in AdS3
[5]. It is tempting to conjecture that formula (11.37) is one-loop exact, since it is the
only expression compatible with BMS3 symmetry. This being said we will not need
to assume one-loop exactness in this thesis and we will not attempt to prove it. The
remainder of this chapter is devoted to various extensions of this matching.

Remark In [17] it was shown that the one-loop partition function (11.37) with s = 2,
and hence the vacuum BMS3 character (10.66), can be reproduced using quantum
Regge calculus. In that context the truncation of the product over n = 2, 3, . . . is a
consequence of triangulation-invariance in the bulk.

11.1.4 Relation to Poincaré Characters

We now show that all one-loop partition functions displayed above can be written
as exponentials of (sums of) the Poincaré characters of Sect. 4.2. Recall in particular
that massive characters are given by Eq. (4.60), where f is the rotation (11.8) and χλ

is the character of an irreducible representation of the little group SO(D − 1) with
highest weight λ.

http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_4
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In order to represent a massive relativistic particle with spin s, we choose the
weight λ to be λs = (s, 0, . . . , 0) in terms of the dual basis of the Cartan subalgebra
of so(D − 1) described above (11.21). With this choice, expressions (4.60) and
(4.65) actually appear in the exponent of (11.24): taking α0 = iβ, we can rewrite the
rotating one-loop partition function for a massive field with spin s as the exponential
of a sum of Poincaré characters:

ZM,s[β, �θ ] = exp

[ +∞∑
n=1

1

n
χM,s[n �θ, inβ]

]
. (11.38)

The series in the exponent diverges for real θi ’s,which can be cured by adding suitable
imaginary parts to these angles as explained above. This result holds for any space-
time dimension D (along with the infrared regularization (4.64)). From a physical
perspective, it is the statement that a free field is a collection of harmonic oscillators,
one for each value of momentum: the index n then labels the oscillator modes, while
the integral over momenta is the one in the Frobenius formula (10.54). In particu-
lar, standard, non-rotating one-loop partition functions are exponentials of sums of
characters of (Euclidean) time translations. This relation has also been observed in
AdS [13, 14, 18]; our partition functions are flat limits of these earlier results, up to
the even-dimensional regularization subtlety mentioned below Eq. (11.19). Note that
this issue already occurs at the level of characters: although most of (4.65) is a flat
limit of an SO(D − 1, 2) character, it is not clear how to regularize the divergences
that pop up when one of the angles vanishes so as to recover the regulators (4.64).
This problem also appears for odd D when one or more angles are set to zero.

For massless fields, the situation is a bit more complicated. For even D the mass-
less Poincaré character (4.69) is the limit M → 0 of its massive counterpart (4.65),
and the one-loop partition function (11.28) can again be written as an exponential
(11.38).But in odd space-timedimensions, SO(D−2)has lower rank thanSO(D−1),
so the rotation (11.8) is not, in general, conjugate to an element of the massless little
group: it has one angle too much, and whenever all angles θ1, . . . , θr are non-zero,
the character (4.33) vanishes. The only non-trivial irreducible character arises when
at least one of the angles θ1, . . . , θr vanishes, say θr = 0, in which case the massless
character takes the form (4.71). However, comparison with (11.32) reveals a mis-
match: the partition function does not take the form (11.38) in terms of the massless
characters (4.71); in field theory, all r angles θi may be switched on simultaneously!
To accommodate for this one can resort to the angle-dependent coefficients Ar

k(
�θ)

introduced in (11.31), whose origin can again be understood through the massless
limit of the character (4.60). Using relation (11.33), the product of massless partition
functions with spins ranging from zero to s can be written as (11.38), where the
characters on the right-hand side are massless limits of massive Poincaré characters.
However, it is unclear whether the quantities appearing in the exponent of (11.32)
can be related directly to Poincaré characters without invoking a massless limit.

The occurrence of Poincaré characters in (11.38) illuminates certain aspects
of gravity and higher-spin theories in three dimensions. Indeed, recall expression
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(11.30) for the partition function of a field with spin s in three-dimensional ther-
mal, rotating Minkowski space. (The regularization is unimportant for our present
argument.) Since the space-time dimension is odd, the terms of the series in the expo-
nential are not quite massless Poincaré characters, but they can still be interpreted
as contributions of specific field excitations. Indeed, the terms eisnθ are due to the
heat kernel with spin s, while the terms −ei(s−1)nθ come from ghosts, with a minus
sign due to their fermionic statistics. The difference eisnθ − ei(s−1)nθ vanishes when
θ = 0, in accordance with the fact that ghosts cancel all would-be local degrees of
freedom. However, when θ 
= 0, the cancellation is incomplete because would-be
local field excitations and ghosts have different spins (s and s − 1, respectively). As
a result the one-loop partition function is non-trivial despite the absence of physical
local degrees of freedom.

11.2 Representations and Characters of Flat WN

As an application of the results of the previous section, we now explain how certain
combinations of one-loop partition functions in three-dimensional flat space repro-
duce characters of higher-spin asymptotic symmetry algebras at null infinity. As it
turns out, the coadjoint representation of standard WN algebras [19–21] will play a
key role in the analysis, so we first review briefly the analogous situation of higher-
spin fields in AdS3.We then turn to the case of spin 3 in flat space and describe certain
irreducible unitary representations of the corresponding asymptotic symmetry group.
Upon evaluating their characters thanks to the Frobenius formula, we find that they
match suitable products of partition functions. We also extend these observations to
arbitrary spin N . The description of the induced modules and quantum algebras that
correspond to this construction are relegated to Sect. 11.3.

11.2.1 Higher Spins in AdS3 andWN Algebras

As a preparation for flat space computations, we review here the asymptotic symme-
tries of higher-spin theories in AdS3. We also describe the corresponding quantum
symmetry algebras, their unitary representations and their characters, which match
field-theoretic one-loop partition functions.

Asymptotic Symmetries

Asymptotic symmetries of higher-spin theories in three dimensions were first studied
in AdS3 [22–25], and are similar to the Brown–Henneaux asymptotic symmetries
of gravity described in Chap.8. Here we focus on models including fields with
spin ranging from 2 to N ; this setup can be described as an sl(N , R) ⊕ sl(N , R)

Chern-Simons action with a principally embedded sl(2, R) ⊕ sl(2, R) gravitational
subalgebra. When N = 3, the asymptotic symmetries are generated by gauge

http://dx.doi.org/10.1007/978-3-319-61878-4_8
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transformations specified by four arbitrary, 2π-periodic functions
(
X (x+), ξ(x+)

)
and

(
X̄(x−), ξ̄(x−)

)
of the light-cone coordinates x± on the boundary of AdS3. In

particular, the functions X (x+) and X̄(x−) generate Brown–Henneaux conformal
transformations of the type described in Sect. 8.2. Since the results are left-right
symmetric, we focus on the left-moving sector. The surface charge associated with
a transformation (X, ξ) then generalizes the (left-moving half of the) gravitational
expression (8.42) and takes the form [23]

Q(X,ξ)[p, ρ] = 1

2π

∫ 2π

0
dϕ
[
X (x+)p(x+) + ξ(x+)ρ(x+)

]
(11.39)

when the normalization is chosen so that pure AdS3 with all higher-spin fields
switched off has vanishing higher-spin charges and negative mass −1/8G. Here
ϕ = (x+ − x−)/2, while p(x+) and ρ(x+) are two arbitrary, 2π-periodic functions
specifying a solution of the field equations. In particular p(x+) is one of the two func-
tions

(
p(x+), p̄(x−)

)
that determine an on-shell AdS3 metric (8.38) while ρ(x+),

together with its anti-chiral counterpart ρ̄(x−), specifies an on-shell higher-spin field
configuration. The vacuum field configuration (8.47) corresponds to pure AdS3 with
all higher-spin fields set to zero, and is given by ρ = ρ̄ = 0, p = p̄ = −�/16G.

One can think of the pair (X, ξ) as an element of the asymptotic symmetry algebra,
so the charge (11.39) is the pairing between this algebra and its dual space. This
generalizes the pairing (6.34) of the Virasoro algebra with CFT stress tensors, and
(p, ρ) may be seen as a coadjoint vector of the symmetry algebra. Its infinitesimal
transformation law extends (8.39) and turns out to be [23]

δ(X,ξ) p = Xp′ + 2X ′ p − c

12
X ′′′ + 2 ξρ′ + 3 ξ′ρ , (11.40a)

δ(X,ξ)ρ = Xρ′ + 3X ′ρ + 2ξ p′′′ + 9ξ′ p′′ + 15ξ′′ p′ + 10ξ′′′ p

− c

12
ξ(5) − 192

c

(
ξ pp′ + ξ′ p2

)
, (11.40b)

where prime denotes differentiationwith respect to x+, and c = 3�/2G is theBrown–
Henneaux central charge. Analogous formulas hold in the anti-chiral sector. Since X
generates conformal transformations, this implies that p is a (chiral) quasi-primary
field with weight 2 while ρ is a primary with weight 3. Together with the surface
charges (11.39), these transformation laws yield the Poisson bracket (8.10):

{
Q(X,ξ)[ p, ρ], Q(Y,ζ)[ p, ρ]} = − δ(X,ξ)Q(Y,ζ)[p,π] . (11.41)

Formula (11.40) turns out to coincide with the coadjoint representation of a Poisson
algebra known as theW3 algebra, and indeed one finds that the bracket (11.41) repro-
duces the non-linear bracket of a W3 algebra with central charge c (see Eq. (11.43)
below). Similar considerations apply to models including fields with spin ranging
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from 2 to N [23, 25]; the resulting asymptotic symmetry algebra is the direct sum
of two copies of WN .

Quantum W3 Algebra

Owing to the fact that (11.40) is the coadjoint representation of W3, the orbit of
the AdS3 vacuum

(
p = p̄ = −c/24, ρ = ρ̄ = 0

)
under asymptotic symmetry

transformations is a direct product of two vacuum coadjoint orbits of WN ; these
orbits are well-defined infinite-dimensional manifolds even though the definition
of finite symmetry transformations is more intricate than in the pure Virasoro case
corresponding to N = 2 [21]. Putting all mathematical subtleties under the rug, one
thus expects the quantization of that orbit to produce the vacuum highest-weight
representation of the quantum algebra WN ⊕ WN . Accordingly, we now describe
the quantum version of the W3 algebra.

As in the purely gravitational case (8.46), the classical asymptotic symmetry
algebra given by the surface charges (11.39) can be written in terms of modes

Lm ≡ Q(eimx+ ,0) , Wm ≡ Q(0,eimx+ ) (11.42)

and their barred counterparts in the right-moving sector. The normalization is such
that pure AdS3 has all charges vanishing except L0 = L̄0 = −c/24. Using (11.40),
one finds that the Poisson brackets (11.41) of the charges (11.42) take the form of a
classical W3 algebra:

i{Lm,Ln} = (m − n)Lm+n + c

12
m3δm+n,0 ,

i{Lm,Wn} = (2m − n)Wm+n ,

i{Wm,Wn} = (m − n)(2m2 + 2n2 − mn)Lm+n + 96

c
�m+n + c

12
m5δm+n,0 ,

(11.43)

where �m ≡ ∑
p∈Z Lm−pLp is a non-linear term and the first line is the usual Vira-

soro algebra. The same brackets hold in the right-moving sector, so as announced
the asymptotic symmetry algebra is a direct sum of two classical W3 algebras.
Under quantization the Poisson brackets are turned into commutators according to
i {̂·, ·} = [·̂, ·̂] and the charges Lm,Wn become operators Lm,Wn which, in any
unitary representation, satisfy the Hermiticity conditions

L†
m = L−m , W †

m = W−m .

It is also customary to normalize the Virasoro generators Lm so that the vacuum state
has vanishing eigenvalue under L0, i.e. to rename Lm + c

24δm,0 into Lm . As a result
the commutators of the operators Lm,Wn yield the quantum W3 algebra

http://dx.doi.org/10.1007/978-3-319-61878-4_8
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[Lm, Ln] = (m − n)Lm+n + c

12
(m3 − m)δm+n, 0 , (11.44a)

[Lm,Wn] = (2m − n)Wm+n , (11.44b)

[Wm,Wn] = (m − n)(2m2 + 2n2 − mn − 8)Lm+n + 96

c + 22/5
(m − n) :�m+n :

+ c

12
(m2 − 4)(m3 − m)δm+n,0 , (11.44c)

whose non-linear terms are normal-ordered according to the prescription

:�m : ≡
∑
p≥−1

Lm−pL p +
∑
p<−1

L pLm−p − 3

10
(m + 3)(m + 2)Lm . (11.45)

Here the term linear in Lm ensures that the operator :�m : is quasi-primary with
respect to the action of Lm’s. Note how the denominator of the structure constant of
the non-linear term in (11.44c) involves a shifted central charge c + 22/5 instead of
the classical c in the last line of (11.43). Analogous commutation relations hold in
the barred sector.

Unitary Representations and Characters

Unitary representations of the quantum W3 algebra are obtained analogously to the
Virasoro highest-weight representations of Sect. 8.4, and are spanned by the descen-
dants of a highest-weight state annihilated by operators Lm,Wn with m, n > 0. At
large c, such representations are irreducible. The same is true ofWN algebras for any
finite N , and irreducible unitary representations of WN ⊕ WN are tensor products
of individual highest-weight representations of the two WN algebras (at large c, c̄).
Characters of such representations can be evaluated by adapting the counting argu-
ment that led to (8.74). In particular the character of a highest-weight representation
of WN ⊕ WN with central charges (c, c̄), generic highest weights (h, h̄), vanishing
higher-spin weights and vanishing higher-spin chemical potentials, is

Tr
(
qL0−c/24q̄ L̄0−c̄/24

)
= qh−c/24q̄ h̄−c̄/24

(+∞∏
n=1

1

|1 − qn|2
)N−1

. (11.46)

This reduces to the product of Virasoro characters (10.62) when N = 2. The vacuum
character of WN ⊕ WN similarly reads

Trvac
(
qL0−c/24q̄ L̄0−c̄/24

)
=

N∏
s=2

(+∞∏
n=s

1

|1 − qn|2
)

, (11.47)

where the truncated product arises because the vacuum state is left invariant by the
wedge algebra sl(N , R). This reduces to the vacuum character (8.79) when N = 2.

As mentioned earlier, it was shown in [5] that the one-loop partition function of
gravitons in AdS3 at temperature 1/β and angular potential θ is a vacuum character
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(8.79) with modular parameter (8.78). This result was later extended to higher-spin
theories [6, 7], whose one-loop partition functions on thermal AdS3 coincide with
vacuumWN ⊕WN characters (11.47) upon including the contribution of fields with
spins s = 2, 3, . . . , N . These results confirm the interpretation of irreducible unitary
representations of asymptotic symmetry groups as particles dressed with boundary
degrees of freedom. The purpose of the remainder of this chapter is to describe the
similar matching that occurs in asymptotically flat theories.

11.2.2 Flat W3 Algebra

The asymptotic symmetries of higher-spin theories at null infinity in three-
dimensional flat space were described in [1, 26, 27]. Here we focus on the model
describing the gravitational coupling of a field of spin 3, which is a three-dimensional
Chern-Simons theory whose gauge algebra sl(3, R) � sl(3, R)Ab is the flat limit of
sl(3, R) ⊕ sl(3, R). The associated asymptotic symmetry generators turn out to be
labelled by four arbitrary, 2π-periodic functions X (ϕ), ξ(ϕ), α(ϕ) and a(ϕ) on the
celestial circle at (future) null infinity. Of these, X (ϕ) and α(ϕ) generate standard
BMS3 superrotations and supertranslations (respectively), while ξ and a are their
higher-spin extensions. The corresponding surface charges extend the gravitational
formula (9.31) and read

Q(X,ξ,α,a)[ j, κ, p, ρ] = 1

2π

∫ 2π

0
dϕ
[
X (ϕ) j (ϕ) + ξ(ϕ)κ(ϕ) + α(ϕ)p(ϕ) + a(ϕ)ρ(ϕ)

]
,

(11.48)

where the 2π-periodic functions j ,κ, p and ρ determine a solution of the equations of
motion. In particular p(ϕ) is theBondimass aspect (supermomentum) and j (ϕ) is the
angularmomentum aspect (angular supermomentum) appearing in an asymptotically
flatmetric (9.25). The functions ρ andκ are analogous quantities for a spin-3 field. As
usual, the quadruple ( j,κ, p, ρ) may be seen as an element of the dual space of the
asymptotic symmetry algebra. In particular, the higher-spin supermomentum (p, ρ)

transforms under higher-spin superrotations (X, ξ) as a coadjoint vector of the W3

algebra, i.e. according to (11.40), albeit with a central charge c2 = 3/G instead of c.
The Poisson brackets satisfied by the surface charges (11.48) are given as usual

by (11.41) and are most easily expressed in terms of generators

Jm ≡ Q(eimϕ,0,0,0) , Km ≡ Q(0,eimϕ,0,0) , Pm ≡ Q(0,0,eimϕ,0) , Qm ≡ Q(0,0,0,eimϕ) .

Note that with this normalization pureMinkowski space has all its charges vanishing,
exceptP0 = −1/8G. One then finds that theJm’s andPm’s close according to a bms3
algebra (9.37) with central charge c2 = 3/G, while brackets involving higher-spin
charges take the form
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http://dx.doi.org/10.1007/978-3-319-61878-4_8
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_9


11.2 Representations and Characters of Flat WN 393

i{Jm,Kn} = (2m − n)Km+n , (11.49a)

i{Jm,Qn} = (2m − n)Qm+n , (11.49b)

i{Pm,Kn} = (2m − n)Qm+n , (11.49c)

i{Pm,Qn} = 0 , (11.49d)

i{Km,Kn} = (m − n)(2m2 + 2n2 − mn)Jm+n + 96

c2
(m − n)�m+n , (11.49e)

i{Km,Qn} = (m − n)(2m2 + 2n2 − mn)Pm+n + 96

c2
�m+n + c2

12
m5δm+n,0

(11.49f)

where the non-linear terms � and � are given by

�m ≡
∑
p∈Z

(Pm−pJp + Jm−pPp
)

, �m ≡
∑
p∈Z

Pm−pPp . (11.50)

These formulas show that, up to central terms, the brackets of (J ,K)’s with (P,Q)’s
take the same form as the brackets of (J ,K)’s with themselves. This is the situation
described in (9.48) and it implies that, similarly to (9.64), the asymptotic symmetry
algebra is an exceptional semi-direct sum

“flat W3 algebra” ≡ W3�ad(W3)Ab , (11.51)

where W3 is the classical W3 algebra (11.43) and (W3)Ab denotes an Abelian Lie
algebra isomorphic, as a vector space, to W3. This algebra is centrally extended, as
the bracket between generators ofW3 and those of (W3)Ab includes a central charge
c2; there is also a central charge c1 specific to the left (non-Abelian)W3 subalgebra
of (11.51), but it is not switched on in parity-preserving theories. We shall return to
this structure in Sect. 11.3, upon describing its quantum version.

Induced Representations and Unitarity

Since the flat W3 algebra (11.51) has the exceptional form g � gAb, with g the
standard W3 algebra, its unitary representations should be induced representations
labelled by orbits of supermomenta under the coadjoint action of elements of a group
whose tangent space at the identity is the W3 algebra. However, the non-linearities
that appear in W algebras make this step subtle, so one can bypass the need to
control the group as follows. GenericW algebras define a Poisson manifold through
(11.41) and one can classify the submanifolds on which the Poisson structure is
invertible, i.e. their symplectic leaves in the terminology of Sect. 5.1. In the case of
the Virasoro algebra (which corresponds toWN with N = 2) this concept coincides
with that of a coadjoint orbit of the Virasoro group. For higher N the symplectic
leaves ofWN algebras are still well defined [21] despite the lack of a straightforward
definition of the group that corresponds to the WN algebra. These leaves may be
seen as intersections of the coadjoint orbits of sl(N )-Kac Moody algebras with the
constraints that implement the Hamiltonian reduction toWN algebras. Accordingly,
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it should be possible to build unitary representations of flat WN algebras as Hilbert
spaces ofwavefunctions definedon their symplectic leaves,whichweassumeas usual
to admit quasi-invariant measures. In most of the remainder of this chapter, we test
that proposal by showing how it can be used to evaluate characters that coincide with
higher-spin one-looppartition functions.Note that the non-linearities appearing in the
brackets of the algebra (11.51) imply an extra complication for representation theory
in that one has to devise a suitable normal-ordering prescription. In the standardW3

case we displayed this normal ordering in (11.45). In the flat case we will address
this issue in Sect. 11.3.

The complete classification of the symplectic leaves of the W3 algebra has been
worked out in [20, 21]; according to our proposal this settles the classification of
irreducible unitary representations of the flatW3 algebra, in the same way that Vira-
soro coadjoint orbits classify BMS3 particles. Instead of describing the details of
this classification, we focus from now on on orbits of constant supermomenta, which
can be classified thanks to the infinitesimal transformation laws (11.40) given by the
algebra. To describe such an orbit, let us pick a pair (p, ρ) where p(ϕ) = p0 and
ρ(ϕ) = ρ0 are constants, and act on it with an infinitesimal higher-spin superrotation
(X, ξ). Then, all terms involving derivatives of p or ρ in Eq. (11.40) vanish, and we
find

δ(X,ξ) p0 = 2 X ′ p0 − c2
12

X ′′′ + 3 ξ′ρ0 , (11.52a)

δ(X,ξ)ρ0 = 3 X ′ρ0 + 10 ξ′′′ p0 − c2
12

ξ(5) − 192

c2
ξ′ p20 . (11.52b)

The little group for (p0, ρ0) consists of higher-spin superrotations leaving it invariant.
Its Lie algebra is therefore spanned by pairs (X, ξ) such that the right-hand sides of
Eq. (11.52) vanish:

2 X ′ p0 − c2
12

X ′′′ + 3 ξ′ρ0 = 0 , (11.53a)

3 X ′ρ0 + 10 ξ′′′ p0 − c2
12

ξ(5) − 192

c2
ξ′ p20 = 0 . (11.53b)

The solutions of these equations depend on the values of p0 and ρ0. Here we take
ρ0 = 0 for simplicity, i.e. we only consider cases where all higher-spin charges
are switched off. Then, given p0, Eq. (11.53) become two decoupled differential
equations for the functions X (ϕ) and ξ(ϕ), leading to three different cases:

• For generic values of p0, the only pairs (X, ξ) leaving (p0, 0) invariant are con-
stants, and generate a little group U(1) × R.

• For p0 = −n2c2/96 where n is a positive odd integer, the pairs (X, ξ) leaving
(p0, 0) invariant take the form

X (ϕ) = A, ξ(ϕ) = B + C cos(nϕ) + D sin(nϕ), (11.54)
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where A, B,C and D are real numbers. The corresponding little group is the n-fold
cover of GL(2, R).

• For p0 = −n2c2/24 = −(2n)2c2/96 where n is a positive integer, the Lie algebra
of the little group is spanned by

X (ϕ) = A + B cos(nϕ) + C sin(nϕ),

ξ(ϕ) = D + E cos(nϕ) + F sin(nϕ) + G cos(2nϕ) + H sin(2nϕ),
(11.55)

where A, B, . . . , H are real coefficients. The little group is thus an n-fold cover
of SL(3, R). In particular, p0 = −c2/24 realizes the absolute minimum of energy
among all supermomenta belonging to orbits with energy bounded from below. It
is thus the supermomentumof the vacuum state, and indeed, upon using c2 = 3/G,
the field configuration that corresponds to it is themetric ofMinkowski space (with
the spin-3 field set to zero on account of ρ0 = 0).

These results extend our earlier observations on Virasoro orbits in Sect. 7.1.

11.2.3 Flat W3 Characters

The information on little groups turns out to be sufficient to evaluate certain characters
along the lines of Sect. 10.3. For instance, consider an induced representation based
on the orbitOp of a generic pair (p0, 0), and call (s,σ) the spin of the representation
R of the little group U(1) × R. Then take a superrotation which is an element of the
U(1) subgroup (i.e. a rotation f (ϕ) = ϕ + θ). The only point on the orbit that is left
invariant by the rotation is (p0, 0), and the whole integral over the orbit in (10.54)
localizes to that point. Therefore, in analogy with the BMS3 example, the detailed
knowledge of the orbit is irrelevant to compute the character. In particular, including
a higher-spin supertranslation

(
α(ϕ), a(ϕ)

)
, the only components of α(ϕ) and a(ϕ)

that survive the integration are their zero-modes α0 and a0. The character thus takes
the form

χ[(rotθ,α, a)] = eisθeip0α
0
∫
Op

dμ(k) δ(k, rotθ · k) (11.56)

where the little group character eisθ factors out as in (4.55). In writing this we assume
the existence of a quasi-invariant measure μ on the orbit, whose precise expression
is unimportant since different measures give representations that are unitarily equiv-
alent. Our remaining task is to integrate the delta function. To do so, we use local
coordinates on the orbit, which we choose to be the Fourier modes of higher-spin
supermomenta as we did in Sect. 10.3. Since p0 is generic, the non-redundant coor-
dinates on the orbit are the non-zero modes. As in (10.60) the integral is thus
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∫
Op

dμ(k)δ(k, rotθ ·k) =
∏

n ∈Z∗

(∫
dknδ(kn − einθkn)

) ∏
m ∈Z∗

(∫
dρmδ(ρm − eimθρm)

)
,

(11.57)

where we call kn the Fourier modes of the standard (spin 2) supermomentum, while
ρm are themodes of its higher-spin counterpart. Performing the integrals over Fourier
modes and adding small imaginary parts iε to θ as in (10.56), we obtain

χ[(rotθ,α, a)] = eisθeip0α
0

(+∞∏
n=1

1

|1 − ein(θ+iε)|2
)2

. (11.58)

This is a natural spin-3 extension of the spin-2 (BMS3) massive character (10.61),
in the same way that (11.46) generalizes Virasoro characters. It is also a flat limit of
(11.46) for N = 3.

A similar computation can be performed for orbits of other higher-spin supermo-
menta (p0, 0). The only subtlety is that, for the values of p0 for which the little group
is larger than U(1)×R, the orbit has higher codimension inW∗

3 than the generic orbit
just discussed. Accordingly, there are fewer coordinates on the orbit and the products
of integrals (11.57) are truncated. For instance, when p0 = −n2c2 = /24 with n a
positive integer, the little group is generated by pairs (X, ξ) of the form (11.55), so
that the Fourier modes providing non-redundant local coordinates on the orbit (in a
neighbourhood of (p0, 0)) are the modes km withm /∈ {−n, 0, n} and the higher-spin
modes ρm with m /∈ {−2n,−n, 0, n, 2n}. Assuming that the representationR of the
little group is trivial, this produces a character

χ[(rotθ,α, a)] = e−in2c2α0/24

( +∞∏
m=1,
m 
=n

1

|1 − eim(θ+iε)|2
)

·
( +∞∏

m=1,
m 
=n,
m 
=2n

1

|1 − eim(θ+iε)|2
)

.

(11.59)
The choice n = 1 specifies the vacuum representation of the flatW3 algebra; taking
α to be a Euclidean time translation by iβ, we get

χvac[(rotθ,α = iβ, a = 0)] = eβc2/24

( +∞∏
n=2

1

|1 − ein(θ+iε)|2
)

·
( +∞∏

n=3

1

|1 − ein(θ+iε)|2
)

.

(11.60)

This is one of our key results in this chapter. Indeed, comparing with Eq. (11.37),
we recognize the product of the (suitably regularized) rotating one-loop partition
functions of massless fields with spins two and three in three-dimensional flat space.
It provides a first non-trivial check of our proposal for the construction of unitary
representations of flat WN algebras.

All the induced representations described above are unitary by construction, pro-
vided one can define (quasi-invariant) measures on the corresponding orbits. In anal-
ogy with representations of the bms3 algebra, they can also be described as induced
modules that generalize those of Sect. 10.2; we will turn to them in Sect. 11.3.

http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_10
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11.2.4 Flat WN Algebras

The considerations of the previous pages can be generalized to higher-spin theories
in flat space with spins ranging from 2 to N . In AdS3 the asymptotic symmetries of
models with this field content consist of two copies of aWN algebra, so it is natural
to anticipate that the corresponding theory in flat space will have an asymptotic
symmetry algebra of the exceptional form

“flat WN algebra” ≡ WN�ad(WN )Ab , (11.61)

in analogy with (11.51). The surface charges generating these symmetries should
coincide with the pairing of the Lie algebra of (11.61) with its dual space, and they
are likely to satisfy a centrally extended algebra. Since the presence of higher-spin
fields does not affect the value of the central charge in three-dimensional AdS gravity
[22, 23], one expects the central charge in this case to be the usual c2 = 3/G
appearing in mixed brackets. This structure was indeed observed for N = 4 in [1].
We now argue that this proposal must hold for any N by showing that the vacuum
character of (11.61), computed along the lines followed above for flatW3, reproduces
the product of one-loop partition functions of fields of spin 2, 3, . . . , N .

According to our proposal for the characterization of the representations of semi-
direct sums of the type (11.61), unitary representation of flat WN algebras are clas-
sified by their symplectic leaves, that is, by orbits of higher-spin supermomenta
(p1, . . . , pN−1). (Here p1(ϕ) is the supermomentum that we used to write as p(ϕ),
while p2(ϕ) is what we called ρ(ϕ) for N = 3.) The infinitesimal transformations
that generalize (11.40) and that define these orbits locally can be found for instance in
[25]. Here we focus on the vacuum orbit where we set all higher-spin charges to zero
and take only p1 = −c2/24 to be non-vanishing. This particular supermomentum is
left fixed by higher-spin superrotations of the form

Xi (ϕ) = Ai +
i∑

j=1

(
Bi j cos( jϕ) + Ci j sin( jϕ)

)
, i = 1, . . . , N − 1, (11.62)

where the coefficients Ai , Bi j , Ci j are real. In principle one can obtain such symme-
try generators by looking for the little group of the vacuum as in (11.53), using for
instance the explicit formulas of [25]. Yet, a simpler way to derive the same result
is to look for the higher-spin isometries of the vacuum in the first-order formula-
tion, in which the theory is described by a Chern-Simons action with gauge algebra
sl(N , R) �ad (sl(N , R))Ab (see e.g. [1, 27, 28]). In this language, and in terms of
retarded Bondi coordinates (r,ϕ, u), the vacuum field configuration takes the form

Aμ(x) = b(r)−1g(u,ϕ)−1∂μ [g(u,ϕ)b(r)] , b(r) = exp
[ r
2
P−1

]
, (11.63)
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where g(u,ϕ) is a field valued in SL(N , R) � sl(N , R), given by

g(u,ϕ) = exp

[(
P1 + 1

4
P−1

)
u +

(
J1 + 1

4
J−1

)
ϕ

]
(11.64)

in terms of Poincaré generators that satisfy the commutation relations (10.26). The
isometries of this field configuration are generated by gauge parameters of the form
(g · b)−1Ta(g · b), where Ta is any of the basis elements of the gauge algebra.
Upon expanding g−1Tag as a position-dependent linear combination of gauge algebra
generators, the function multiplying the lowest weight generator coincides with the
corresponding asymptotic symmetry parameter (see e.g. [23] for details). The latter
can be obtained as follows.

For convenience, we diagonalize the Lorentz piece of the group element (11.64) as

exp

[(
J1 + 1

4
J−1

)
ϕ

]
= Sei J0ϕS−1 (11.65)

where S is some SL(2, R) matrix. Then the gauge parameters that generate the little
group of the vacuum configuration can be written as

exp

[
−
(
J1 + 1

4
J−1

)
ϕ

] �∑
m=−�

αmW (�)
m exp

[(
J1 + 1

4
J−1

)
ϕ

]
(11.66a)

= S e−i J0ϕ
�∑

m=−�

αm S−1 W (�)
m S ei J0ϕ S−1, (11.66b)

where the αm’s are certain real coefficients, while the W (�)
m ’s (with 2 ≤ � ≤ N

and −� ≤ m ≤ �) generate the sl(N , R) algebra (including Jm ≡ W (2)
m ). Note that

the matrix S preserves the conformal weight since it is an exponential of sl(2, R)

generators, so that
�∑

m=−�

αm S W (�)
m S−1 =

�∑
m=−�

α̃mW (�)
m (11.67)

for some coefficients α̃ j obtained by acting on theαm’s with an invertible linear map.
Since each generator W (�)

m has weight m under J0, Eq. (11.66b) can be rewritten as

�∑
m=−�

eimϕα̃m S W (�)
m S−1 =

�∑
m,n=−�

βmnW (�)
n ei jϕ =

�∑
m=−�

eimϕβm�W (�)
� + · · ·

(11.68)

for some coefficients βmn . In the last step we omitted all terms proportional toW (�)
m ’s

with m < �; the important piece is the term that multiplies the highest-weight
generatorW (�)

� : it is the function on the circle that generates the asymptotic symmetry
corresponding to the generator

∑�
m=−� αmW (�)

m thatwe startedwith in (11.66a). Since

http://dx.doi.org/10.1007/978-3-319-61878-4_10
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the βm�’s are related to theαm’s by an invertible linear map, and since there are 2�+1
linearly independent generators of this type, the isometries of the vacuum exactly
span the set of functions of the form (11.62). This is what we wanted to prove; there
are N 2 − 1 linearly independent asymptotic symmetry generators of this form, and
they span the Lie algebra sl(N , R).

The character associated with the vacuum representation of (11.61) can then
be worked out exactly as in the cases N = 2 and N = 3 discussed above: using
the Fourier modes of the N−1 components of supermomentum as coordinates on the
orbit, we need to mod out the redundant modes. For the vacuum orbit, these are the
modes ranging from −(s − 1) to (s − 1) for the s th component. The integral over
the localizing delta function in the Frobenius formula (4.33) then produces a character

χ[(rotθ, a1 = iβ)] = eβc2/24
N∏

s=2

(+∞∏
n=s

1

|1 − ein(θ+iε)2 |

)
(11.69)

where we implicitly set to zero all higher-spin supertranslations except the gravita-
tional one, a1 = iβ. Comparing with (11.37), we recognize the product of one-loop
partition functions of massless higher-spin fields with spins ranging from 2 to N ,
including a classical contribution. This result confirms, on the one hand, our conjec-
ture (11.61) for the asymptotic symmetry algebras of generic higher-spin theories in
three-dimensional flat space, and on the other hand it provides another consistency
check of our proposal for the characterization of unitary representations of flat WN

algebras. It is also a flat limit of the vacuumWN ⊕WN character displayed in (11.47).

11.3 Flat W3 Modules

We now turn to the algebraic analogue of the above considerations, i.e. we describe
induced modules of flat WN algebras along the lines of Sect. 10.2. For simplicity
we focus on the case N = 3 but the construction also applies to other higher-spin
extensions of bms3. Due to the non-linearities of W3, our plan in this section is
slightly different from that of Sect. 10.2. Namely, we start by describing the quantum
flat W3 algebra as an ultrarelativistic limit of the direct sum of two quantum W3

algebras, which produces a specific ordering of operators in the non-linear terms
of commutators. We then move on to the description of induced modules of the
ultrarelativistic quantum flat W3 algebra, and show that the ultrarelativistic normal
ordering is defined with respect to a rest frame vacuum. Along the way we compare
our results to those of the non-relativistic limit described in [1], and point out that
the two limits lead to different quantum algebras.

http://dx.doi.org/10.1007/978-3-319-61878-4_4
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_10


400 11 Partition Functions and Characters

11.3.1 Ultrarelativistic and Non-relativistic Limits of W3

The flat W3 algebra (11.51) can be obtained as an Inönü-Wigner contraction of the
direct sum of two W3 algebras. This flat limit was discussed at the semiclassical
level in [26, 27], and a Galilean limit of the quantum algebra was described in [1].
Here we are interested instead in an ultrarelativistic limit of W3 ⊕ W3. The key
difference between the Galilean and ultrarelativistic contractions is that the latter
mixes generators with positive and negative mode numbers, while the former does
not. For linear algebras such as Virasoro, this makes no difference and the two
contractions yield identical quantum algebras, namely bms3 ∼= gca2. When non-
linear terms are involved in the contraction, however, Galilean and ultrarelativistic
limits generally give different quantum algebras, as we now explain.

Ultrarelativistic Contraction

The quantum W3 algebra is spanned by two sets of generators Lm and Wm (m ∈ Z)
whose commutation relations were displayed in (11.44). Consider now a direct sum
W3 ⊕W3, where the generators and the central charge of the other copy ofW3 will
be denoted with a bar on top (L̄m, W̄m and c̄). Introducing a length scale � to be
interpreted as the AdS3 radius, we define new generators Pm and Jm as in (10.32),
as well as

Km ≡ Wm − W̄−m , Qm ≡ 1

�

(
Wm + W̄−m

)
. (11.70)

We also define central charges c1 and c2 as in (9.93). In the limit � → ∞, and
provided the central charges scale in such a way that both c1 and c2 are finite, one
finds that Jm and Pm satisfy the bms3 brackets (10.41) together with

[Jm, Kn] = (2m − n)Km+n , [Jm, Qn] = (2m − n)Qm+n , (11.71a)

[Pm, Kn] = (2m − n)Qm+n , [Pm, Qn] = 0 . (11.71b)

The remaining brackets involving higher-spin generators are

[Km, Kn] = (m − n)(2m2 + 2n2 − mn − 8)Jm+n + 96

c2
(m − n)�m+n (11.71c)

− 96 c1
c22

(m − n)�m+n + c1
12

(m2 − 4)(m3 − m)δm+n, 0 , (11.71d)

[Km, Qn] = (m − n)(2m2 + 2n2 − mn − 8)Pm+n + 96

c2
(m − n)�m+n

+ c2
12

(m2 − 4)(m3 − m)δm+n, 0 , (11.71e)

[Qm, Qn] = 0 , (11.71f)

where the non-linear terms�m and�m are quadratic operators given by (11.50), with
the exact same ordering (and calligraphic letters replaced by usual capital letters):

http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_10
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�m ≡
∑
p∈Z

(
Pm−p Jp + Jm−p Pp

)
, �m ≡

∑
p∈Z

Pm−p Pp . (11.72)

The commutation relations (11.71) are quantum analogues of the Poisson brackets
(11.49), including a central charge c1 and with operators normalized so that the
vacuum has zero eigenvalue under P0. One can check that with the definition (11.50),
the brackets given by (10.41) and (11.71) satisfy Jacobi identities, so the generators
Jm, Km, Pn, Qn span a well-defined non-linear Lie algebra. We call it the quantum
flat W3 algebra. In any unitary representation, its generators satisfy the Hermiticity
conditions

(Qm)† = Q−m , (Km)† = K−m . (11.73)

supplemented with (10.27) for m ∈ Z.
The expressions (11.72) for the quadratic terms follow from the identities

:�m : + :�̄m : = �2

2
�m + O(�) , :�m : − :�̄m : = �

2
�m + O(1) (11.74)

where :�m : is the normal-ordered quadratic term (11.45) of the quantumW3 algebra,
while :�̄m : is its right-moving counterpart. Note, in particular, that both the linear
term in (11.45) and the mixing between positive and negative modes in (10.32)–
(11.70) are necessary to reorganize the sum of quadratic terms with the precise order
of (11.72). We shall see in Sect. 11.3.2 that (11.50) is a normal-ordered polynomial
with respect to the natural vacuum in induced modules of the quantum flat W3

algebra.

Galilean Contraction

In order to compare the quantum flat W3 algebra (11.71) with other results in the
literature [1], we now consider the non-relativistic limit of the quantum direct sum
W3⊕W3. It is obtained by defining central charges c̃1 and c̃2 as in (10.53), introducing
new generators J̃m and P̃m as in (10.52) and writing

K̃m ≡ W̄m + Wm , Q̃m ≡ 1

�

(
W̄m − Wm

)
. (11.75)

Note the differencewith respect to (11.70). In the limit � → +∞ one obtains brackets
of the same form as in (11.71) upon putting tildes on top of all generators, but there
are two important differences: (i) the coefficient in front of�m+n in (11.71d) contains
a shifted central charge c̃1 + 44/5, and (ii) the quadratic term �̃m reads

�̃m =
∑
p≥−1

(
P̃m−p J̃p + J̃m−p P̃p

)
+
∑
p<−1

(
P̃p J̃m−p + J̃p P̃m−p

)
− 3

5
(m+3)(m+2)P̃m

(11.76)

instead of (11.72). The non-linear term �̃m remains the same (up to tildes) since the
generators P̃m commute in the large � limit. The quadratic combinations �̃m and

http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_10
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�̃m can then be interpreted as normal-ordered operators with respect to a Galilean
highest-weight vacuum defined by conditions of the type (10.49) with M̃ = s̃ = 0.
These differences show that the two contractions lead to different quantum algebras,
despite the fact that the corresponding classical algebras coincide.3 Thus, in the
presence of higher-spin fields, the difference between ultrarelativistic and Galilean
limits manifests itself directly in the symmetry algebras and not only at the level of
the representations that survive in the limit.

In the following we restrict attention to irreducible unitary representations of the
ultrarelativistic quantum algebra (11.71), built once again according to the induced
module prescription of Sect. 10.2. On the other hand, highest-weight representations
ofGalilean contractions of two copies of non-linearW algebraswere discussed in [1],
where it was shown that unitary representations with higher-spin states do not exist.

11.3.2 Induced Modules for the FlatW3 Algebra

According to our proposal of Sect. 11.2.2, the Hilbert space of any unitary represen-
tation of the flat W3 algebra consists of wavefunctions on the orbit of a higher-spin
supermomentum

(
p(ϕ), ρ(ϕ)

)
. Assuming that the orbit admits a quasi-invariantmea-

sure, a basis of the Hilbert space is provided by plane waves (10.13) with definite
supermomentum. For definiteness, let us focus on an orbit containing a constant
higher-spin supermomentum (p0, ρ0); this is to say that the representation admits a
rest frame. There is a corresponding plane wave �(p0,ρ0), and any other plane wave
can be obtained by acting on �(p0,ρ0) with a higher-spin superrotation.

Massive modules

Let us take p0 = M−c2/24withM > 0; this corresponds to amassive representation
of the flatW3 algebra. Assuming also that ρ0 is generic, the little group is U(1) × R

and the spin of the representation is therefore a pair (s,σ) ∈ R
2. Now, the plane

wave at rest �(p0,ρ0) ≡ |M, ρ0〉 is a state that satisfies

Pm |M, ρ0〉 = 0 , Qm |M, ρ0〉 = 0 for m 
= 0 , (11.77a)

and is an eigenstate of zero-mode charges:

P0|M, ρ0〉 = M |M, ρ0〉 , J0|M, ρ0〉 = s|M, ρ0〉 , (11.77b)

Q0|M, ρ0〉 = ρ0|M, ρ0〉 , K0|M, ρ0〉 = σ|M, ρ0〉 . (11.77c)

Here M and s are the mass and spin labels encountered in (10.42), while ρ0 and σ
are their spin-3 counterparts. As before we call |M, ρ0〉 the rest frame state of the

3An interesting problem is to understand if these algebras are merely different because of an unfor-
tunate choice of basis, or if they are genuinely distinct in the sense that they are not isomorphic.
We will not address this issue here.

http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_10
http://dx.doi.org/10.1007/978-3-319-61878-4_10
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representation and we normalize the operator P0 so that the vacuum has vanishing
P0 eigenvalue.

The conditions (11.77) define a one-dimensional representation of the subalgebra
spanned by {Pm, Qm, J0,W0}. They can be used to define an induced module H
with basis elements

Kk1 ...Kkm Jl1 ...Jln |M, ρ0〉 , (11.78)

where k1 ≤ · · · ≤ km and l1 ≤ · · · ≤ ln are non-zero integers. This provides an
explicit representation of the quantum flat W3 algebra. Note that the presence of
non-linearities in the commutators (11.71) does not affect the construction of the
induced module, which involves the universal enveloping algebra anyway.

As usual, unitarity is somewhat hidden in the induced module picture but can be
recognized in the fact that the state |M, ρ0〉 is a plane wave, and that acting on it
with finite higher-spin superrotations generates an orthonormal basis of plane wave
states for the carrier space of the representation. Irreducibility can be inferred from
the same argument that we used for bms3: by construction, a supermomentum orbit
is a homogeneous space for the action of superrotations, and this carries over to the
higher-spin setting. This implies that W3 superrotations can map any plane wave
state on any other one, which in turn implies that the space of the representation has
no non-trivial invariant subspace.

Vacuum Module

The vacuum module of the flat W3 algebra can be built in direct analogy to its
bms3 counterpart discussed around (10.44). The only subtlety is the enhancement of
the little group, which leads to additional conditions on superrotations. Indeed the
vacuum state |0〉 is now an eigenstate of all modes Pm and Qm with zero eigenvalue,
and satisfies in addition

Jn|0〉 = 0 for n = −1, 0, 1, Km |0〉 = 0 for m = −2,−1, 0, 1, 2. (11.79)

These conditions ensure that the vacuum is invariant under the sl(3, R) wedge alge-
bra of the W3 subalgebra (which includes in particular the Lorentz algebra). The
corresponding module can then be built as usual by acting with higher-spin super-
rotation generators on the vacuum state and producing states of the form (11.78),
where now all li ’s must be different from −1, 0, 1 and all ki ’s must be different from
−2,−1, 0, 1, 2. We stress that the li ’s and ki ’s can be positive or negative, in sharp
contrast to the non-relativistic modules investigated in [1].

The definition of the flat W3 vacuum allows us to interpret the quadratic terms
(11.72) as being normal-ordered. Indeed, their expectation values vanish in the vac-
uum |0〉:

〈0|�n|0〉 = 〈0|�n|0〉 = 0. (11.80)

http://dx.doi.org/10.1007/978-3-319-61878-4_10
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These considerations appear to be a robust feature of “flat W algebras”: ultrarela-
tivistic contractions of WN ⊕ WN algebras always take the form

“flat WN” = WN�ad(WN )Ab (11.81)

and therefore contain an Abelian ideal, where the semi-direct sum ensures that the
structure constants of the non-linear terms are always proportional to inverse powers
of the central charge. Indeed, for a non-linear operator of nth order the structure con-
stants are of order 1

cn−1 at large c. When expanding them in powers of the contraction
parameter �, this implies that the leading term is proportional to �1−n thanks to (9.93).
In order to obtain a finite expression, it is thus necessary that the resulting non-linear
operator consists of at least n−1 Abelian generators. Terms of this kind always have
a vanishing expectation value in the rest frame vacuum state, although the precise
ordering in the polynomial should be fixed by other means, e.g. by defining the alge-
bra via a contraction of the quantum algebra or by imposing Jacobi identities. Thus
the conditions (11.77) with M = ρ0 = s = σ = 0, together with (11.79), provide a
valid definition of the vacuum for all quantum flatWN algebras.

By contrast, for a highest-weight vacuum of the type (10.49), the quadratic oper-
ators �m given by (11.72) generally have non-vanishing vacuum expectation values.
Thus the extra non-linear structure introduced by higher spins exhibits the fact that the
natural representations in the ultrarelativistic limit are the induced ones discussed
above, rather than the highest-weight ones of [1, 29]. This difference emphasizes
the physical distinction between ultrarelativistic and Galilean limits: the former
is adapted to gravity, and more generally to models of fundamental interactions,
where unitarity is a key requirement. In particular, flat space holography (at least in
the framework of Einstein gravity) is expected to rely on the unitary construction
described in this thesis. By contrast, the Galilean viewpoint is suited to condensed
matter applications, and more generally to situations where unitarity need not hold
— as was indeed argued in [29]. We stress that this difference is a genuine quantum
higher-spin effect: it is not apparent at the classical level, and it does not occur in
pure gravity either.

11.4 Super-BMS3 and Flat Supergravity

This section is devoted to supersymmetric extensions of the BMS3 group, to their
representations, and to their characters. Accordingly we start by describing rotating
one-loop partition functions of fermionic fields in flat space, along the same lines as
in Sect. 11.1. Upon confirming that they take the form of exponentials of Poincaré
characters (11.38),we specialize to D = 3 space-time dimensions. Therewe describe
supersymmetric BMS3 groups and their unitary representations, and note that super
BMS3 multiplets contain towers of infinitely many particles with increasing spins.
Finally, we show that the resulting charactersmatch suitable combinations of bosonic
and fermionic one-loop partition functions.

http://dx.doi.org/10.1007/978-3-319-61878-4_9
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11.4.1 Fermionic Higher Spin Partition Functions

We wish to evaluate the partition function (11.1) of a free fermionic field ψ with
spin s + 1/2 (where s is a non-negative integer) and mass M > 0. Its Euclidean
action can be presented either (i) using a symmetric, γ-traceless spinor field with
s space-time indices and a set of auxiliary fields with no gauge symmetry [30] or
(ii) using a set of symmetric spinor fields with s, s − 1, . . . , 0 space-time indices
and vanishing triple γ-trace, subject to a gauge symmetry generated by γ-traceless
parameters with s − 1, . . . , 0 space-time indices [31]. In the latter case, just as for
bosons, the action is given by a sum of actions for massless fields of each of the
involved spins, plus a set of cross-coupling terms proportional to the mass. In the
limit M → 0 the quadratic couplings vanish and one is left with a sum of decoupled
Fang-Fronsdal actions [32]

S[ψ, ψ̄] =
∫

dDx ψ̄μ1...μs

(
Sμ1...μs − 1

2
γ(μ1 
Sμ2···μs )

− 1

2
δ(μ1μ2Sμ3···μs )λ

λ + h.c.

)
,

(11.82)

where space-time indices are raised and lowered thanks to the Euclidean metric (and
“h.c.” means “Hermitian conjugate”). We use the same symmetrization conventions
as in Sect. 11.1 and

Sμ1...μs = (
∂ ψμ1...μs − ∂(μ1 
ψμ2...μs )

)
. (11.83)

The slash notation means 
V ≡ γμVμ, where the γμ’s are Dirac matrices satisfying
the anticommutation relations {γμ, γν} = δμν .

To compute the partition function for ψ, ψ̄ one has to evaluate a path integral
(11.1) with the integration measure DψDψ̄ and S the action (11.82) or its massive
analogue. The fermionic fields live onR

D/Z as defined by the group action (11.7), but
in contrast to bosons, they satisfy antiperiodic boundary conditions along the thermal
cycle. For a massive field, one thus finds that the partition function is given by

log Z = 1

2
log det(−�(s+1/2) + M2) − 1

2
log det(−�(s−1/2) + M2) , (11.84)

where�(s+1/2) is the Laplacian acting on antiperiodic, symmetric, γ-traceless spinor
fields with s indices onR

D/Z. For massless fields, the gauge symmetry enhancement
requires gauge-fixing and ghosts, leading to [33]

log Z = 1

2
log det(−�(s+1/2)) − log det(−�(s−1/2)) + 1

2
log det(−�(s−3/2)) .

(11.85)
Equations (11.84) and (11.85) are fermionic analogues of the bosonic formulas
(11.11) and (11.25). To evaluate the functional determinants, we rely once more
on heat kernels and the method of images described in Sect. 11.1.1.
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The heat kernel KAB
μs ,νs associated with the operator (−�(s+1/2) + M2) on R

D

is the unique solution of

(�(s+1/2)−M2−∂t )KAB
μs ,νs = 0 , KAB

μs , νs (t = 0, x, x ′) = I
(F)
μs , νs

1ABδ(D)(x−x ′) .

(11.86)
Here KAB

μs ,νs is a bispinor in the indices A and B, and a symmetric bitensor in the
indices μs and νs . (We use again the shorthand μs to denote a set of s symmetrized
indices.) It is also γ-traceless in the sense that

γμKμs , νs = Kμs , νsγ
ν = 0 . (11.87)

The solution of (11.86) satisfying this requirement is

Kμs , νs (t, x, x
′) = 1

(4πt)D/2
e−M2t− 1

4t |x−x ′ |2
I
(F)
μs , νs

, (11.88)

where I
(F)
μs ,νs

is the following bisymmetric, γ-traceless tensor:

I
(F)
μs , νs =

� s
2 �∑

k=0

(−1)k2kk! [D + 2(s − k − 1)]!!
s! [D + 2(k − 1)]!!

(
δkμμδs−2k

μν δsνν − δsμμδs−2k−1
μν δsννγμγν

D + 2(s − k − 1)

)
.

(11.89)
Up to the replacement of I by I

(F), the fermionic heat kernel (11.88) is the same
as the bosonic one in Eq. (11.14). In particular, I

(F) carries all its tensor and spinor
indices.

To evaluate the determinant of (−�(s+1/2) +M2) onR
D/Z, we use once more the

method of images (11.6). As before, we need to keep track of the non-trivial index
structure of KAB

μs ,νs , which leads to

KR
D/Z

μs , αs
(t, x, x ′) =

∑
n ∈Z

(−1)n(J n)α
β
. . . (J n)α

β Un Kμs , βs

(
t, x, γn(x ′)

)
, (11.90)

where the factor (−1)n comes from antiperiodic boundary conditions, J is the matrix
(11.8), and U is a 2�D/2� × 2�D/2� matrix acting on spinor indices in such a way that

Jα
βγβ = UγαU−1 . (11.91)

In other words, U is the matrix corresponding to the transformation (11.8) in the
spinor representation of SO(D), and it can be written as

U = exp

⎡
⎣1

4

�(D−1)/2�∑
j=1

θ j [γ2 j−1, γ2 j ]
⎤
⎦ .
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In particular, a rotation by 2π around any given axis maps the field ψ on −ψ, in
accordance with the fact that spinors represent SO(D) up to a sign. Note that, using
an explicit D-dimensional representation of the γ matrices, one gets

Tr(Un) = 2�D/2�
r∏

i=1

cos(nθi/2) . (11.92)

Now, plugging (11.90) into formula (11.3) for the determinant of −�(s+1/2), one
obtains a sum of integrals which can be evaluated exactly as in the bosonic case. The
only difference with respect to bosons comes from the spin structure, and the end
result is

− log det(−�(s+1/2) + M2) =
∑
n ∈Z∗

(−1)n

|n|
χ(F)
s [n�θ, �ε ]

r∏
j=1

|1 − ein(θ j+iε j )|2
×
{
e−|n|βM D odd
ML
π K1(|n|βM) D even

(11.93)
where we have discarded a volume divergence independent of all chemical potentials
(as in Eq. (11.20)), and where

χ(F)
s [n �θ, �ε ] = (Jμα)s Tr

[
I
(F)
μs ,αs

]
(11.94)

is the fermionic analogue of (11.19), with the same rough regularization as in Eq.
(11.20) (a more careful regularization will be described below for D = 3). This
result takes the same form as (11.20), up to the replacement of χs by χ(F)

s and the
occurrence of (−1)n due to antiperiodicity. In Appendices sections “Mixed Traces
and Symmetric Polynomials” and “Symmetric Polynomials and SO(D) Characters”,
we show that

χ(F)
s [n �θ] 11.B.1&11.B.2=

{
χ(D)

λ(F)
s

[n �θ ] for odd D,

χ(D)

λ(F)
s

[n �θ, 0] for even D,
(11.95)

where the term on the right-hand side is the character of an irreducible representation
of SO(D) with highest weight λ(F)

s = (s + 1/2, 1/2, . . . , 1/2), written here in the
dual basis of the Cartan subalgebra of so(D) described above (11.21).

Having computed the required functional determinants on R
D/Z, we can now

write down the partition functions given by (11.84) and (11.85). In the massive case,
the difference of Laplacians acting on fields with spins (s + 1/2) and (s − 1/2)
produces the difference of two factors (11.95), with labels s and s − 1. It turns
out that formula (11.23) still holds if we replace λs and λs−1 by their fermionic
counterparts, λ(F)

s and λ(F)
s−1. (The proof of this statement follows the exact same

steps as in the bosonic case described in Appendix section “Differences of SO(D)

Characters”, up to obvious replacements that account for the change in the highest
weight vector.) Accordingly, the rotating one-loop partition function of a massive
field with spin s + 1/2 is
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Z(β, �θ ) = exp

⎡
⎢⎢⎢⎣

∞∑
n=1

(−1)n+1

n

χ(D−1)

λ(F)
s

[n �θ, �ε ]
r∏
j=1

|1 − ein(θ j+iε j )|2
×
{
e−nβM (D odd)
ML
π
K1(nβM) (D even)

⎤
⎥⎥⎥⎦ .

(11.96)
In the massless case we must take into account one more difference of characters,
namely (11.27) with λs replaced by λ(F)

s . For D ≥ 4, this difference can be written
as a combination of SO(D − 2) characters (the proof is essentially the same as in
Appendix section “Differences of SO(D) Characters”), and the partition function of
a massless field with spin s + 1/2 exactly takes the form (11.28) or (11.32) (for D
even or odd, respectively) with an additional factor of (−1)n+1 in the sum over n,
and the replacement of λs by λ(F)

s . One can also verify that relation (11.34) remains
true for fermionic partition functions.

For D = 3, differences of SO(2) characters cannot be reduced any further (recall
the discussion surrounding (11.29)), so the best one can do is to write the partition
function of a massless field with spin s + 1/2 as

Z(β, θ) = exp

[+∞∑
n=1

(−1)n+1

n

1

|1 − ein(θ+iε)|2
(
ei(s+1/2)n(θ+iε) − ei(s−1/2)n(θ+iε) + c.c.

)]

(11.97)
provided s ≥ 1. (For s = 0 the exponentials in the summand reduce to ein(θ+iε)/2 +
c.c., without any negative contribution.) Here we are using once more the crude
regularization described around (11.20); a more careful prescription, motivated by
the bosonic combination (11.35), consists in regulating the sum of exponentials in
the summand according to

ei(s+1/2)n(θ+iε) − ei(s−1/2)nθ−(s+3/2)nε + c.c. (11.98)

Upon using this expression in the summand of (11.97) instead of the naive combi-
nation of exponentials written there, the series in the exponential becomes

+∞∑
n=1

(−1)n+1

n

qn(s+1/2) − qn(s+1/2)q̄n + c.c.

|1 − qn|2 =
+∞∑
n=1

(
(−1)n+1

n

qn(s+1/2)

1 − qn
+ c.c.

)

=
+∞∑
j=s

log(1 + q j+1/2) + c.c.

in terms of q = ei(θ+iε). As in the bosonic case (11.36), the regularization (11.98)
has ensured that log Z splits as the sum of a chiral and an anti-chiral function of q.
After renaming j into n, the end result is the following expression for the partition
function of a field with spin s + 1/2 in three dimensions:
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Z =
+∞∏
n=s

∣∣1 + ei(n+1/2)(θ+iε)
∣∣2, (11.99)

which can also be recovered as the flat limit of the corresponding AdS result [33].
The remainder of this chapter is devoted to relating this partition function to the
vacuum characters of various supersymmetric extensions of the BMS3 group.

11.4.2 Supersymmetric BMS3 Groups

The supersymmetric BMS3 groups describe the symmetries of three-dimensional,
asymptotically flat supergravity [34–38]. Here we briefly review some background
on super Lie groups and the super Virasoro algebra, which we then use to provide a
definition of various supersymmetric extensions ofBMS3. The corresponding unitary
representations and characters will be investigated in Sect. 11.4.3.

Supersymmetric Induced Representations

A super Lie group is a pair (�0, γ) where �0 is a Lie group in the standard sense,
while γ is a super Lie algebra whose even part coincides with the Lie algebra of �0,
and whose odd part is a �0-module such that the differential of the �0 action be the
bracket between even and odd elements of γ [39]. Then a super semi-direct product
is a super Lie group of the form [40, 41]

(
G �σ A, g � (A + A)

)
, (11.100)

where G � A is a standard (bosonic) semi-direct product group with Lie algebra
g � A, while g � (A + A) is a super Lie algebra whose odd subalgebra A is a
G-module such that the bracket between elements of g and elements of A be the
differential of the action of G on A, and such that [A,A] = 0 and {A,A} ⊆ A.
By virtue of this definition, the action of G on A is compatible with the super Lie
bracket:

{g · S, g · T } = σg {S, T } ∀ S, T ∈ A , (11.101)

where σ is the action of G on A.
It was shown in [40, 41] that all irreducible, unitary representations of a super

semi-direct product are induced in essentially the same sense as for standard, bosonic
groups. In particular, they are classified by the orbits and little groups of G �σ A, as
explained in Sect. 4.1. However, there are two important differences with respect to
the purely bosonic case:

1. Unitarity rules out all orbits on which energy can be negative, so that the momen-
tum orbits giving rise to unitary representations of the supergroup form a subset
of the full menu of orbits available in the purely bosonic case. More precisely,
given a momentum p ∈ A∗, it must be such that

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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〈p, {S, S}〉 ≥ 0 ∀S ∈ A . (11.102)

When this condition is not satisfied, the representations of (11.100) associated
with the orbitOp are not unitary. The momenta satisfying condition (11.102) are
said to be admissible. Note that admissibility is aG-invariant statement: if f ∈ G
and if p is admissible, then so is f · p, by virtue of (11.101). For instance, the
only admissible momenta for the super Poincaré group are those of massive or
massless particles with positive energy (and the trivial momentum p = 0).

2. Given an admissible momentum p, the odd pieceA of the supersymmetric trans-
lation algebra produces a (generally degenerate) Clifford algebra

Cp = T (A)/
{
S2 − 〈p, {S, S}〉 | S ∈ A} , (11.103)

where T (A) is the tensor algebra of A. Quotienting this algebra by its ideal
generated by the radical ofA, one obtains a non-degenerate Clifford algebra C̄p.
SinceA is a G-module, there exists an action of the little group Gp on C̄p; let us
denote this action by a �→ g ·a for a ∈ C̄p and g ∈ Gp. To obtain a representation
of the full supergroup (11.100), one must find an irreducible representation τ of
C̄p and a representationR0 of Gp acting in the same space, and compatible with
τ in the sense that

τ [g · a] = R0[g] · τ [a] · (R0[g])−1. (11.104)

For finite-dimensional groups, the pair (τ ,R0) turns out to be unique up to mul-
tiplication ofR0 by a character of Gp (and possibly up to parity-reversal). Given
such a pair, we call it the fundamental representation of the supersymmetric little
group.

TheClifford algebra (11.103) leads to a replacement of the irreducible, “spin” rep-
resentations of the little group, by generally reducible representationsR0 ⊗R. This
is the multiplet structure of supersymmetry: the restriction of an irreducible unitary
representation of a supergroup to its bosonic subgroup is generally reducible, and
the various irreducible components account for the combination of spins that gives
rise to a susy multiplet. In the Poincaré group, an irreducible supermultiplet con-
tains finitely many spins; by contrast, we will see below that super-BMS3 multiplets
contain infinitely many spins. Apart from this difference, the structure of induced
representations of super semi-direct products is essentially the same as in the bosonic
case: they consist of wavefunctions on an orbit, taking their values in the space of the
representation R0 ⊗ R. In particular, the Frobenius formula (10.54) for characters
remains valid, up to the replacement of R by R0 ⊗ R.

Supersymmetric Virasoro Algebra

As a preparation for super BMS3, let us first recall the definition of the super Virasoro
algebra. The latter is built by adding to Vect(S1) an odd subalgebra F−1/2(S1) of
−1/2-densities on the circle [42, 43]. This produces a Lie superalgebra, isomorphic
to Vect(S1) ⊕ F−1/2(S1) as a vector space, which we shall write as sVect(S1). Its

http://dx.doi.org/10.1007/978-3-319-61878-4_10
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elements are pairs (X, S), where X = X (ϕ)∂/∂ϕ and S = S(ϕ)(dϕ)−1/2, and the
super Lie bracket is defined as

[
(X, S), (Y, T )

} ≡
(
[X,Y ] + S ⊗ T, X · T − Y · S

)
. (11.105)

Here [X,Y ] is the standard Lie bracket of vector fields and the dot denotes the natural
action of vector fields onF−1/2(S1), so that X ·T is the−1/2-densitywith component

X · T ≡ XT ′ − 1

2
X ′T . (11.106)

(This is formula (6.32) with h = −1/2.) Upon expanding the functions X (ϕ) and
S(ϕ) in Fourier modes, one recovers the standardN = 1 supersymmetric extension
of theWitt algebra. Choosing S(ϕ) to be periodic or antiperiodic leads to the Ramond
or the Neveu–Schwarz sector of the superalgebra, respectively.

The central extension of sVect(S1) is the super Virasoro algebra, svir. Its elements
are triples (X, S,λ) where (X, S) ∈ sVect(S1) and λ ∈ R, with a super Lie bracket

[
(X, S,λ), (Y, T,μ)

} ≡
(
[X,Y ] + S ⊗ T, X · T − Y · S, c(X,Y ) + h(S, T )

)
,

(11.107)
where c is the Gelfand–Fuks cocycle (6.43) while h is its supersymmetric cousin,

h(S, T ) ≡ 1

12π

∫ 2π

0
dϕ S′T ′ . (11.108)

By expanding the functions X and S in Fourier modes, one obtains the usual com-
mutation relations of N = 1 super Virasoro. Explicitly, defining the generators

Lm ≡ (
eimϕ∂ϕ, 0, 0

)
, Qr ≡ (

0, eirϕ(dϕ)−1/2, 0
)
, Z ≡ (0, 0, 1),

one finds that (11.107) yields the super Lie brackets

i[Lm,Ln} = (m − n)Lm+n + Z
12

m3δm+n,0 ,

i[Lm,Qr } =
(m
2

− r
)
Qm+r ,

[Qr ,Qs} = Lr+s + Z
6
r2δr+s,0 . (11.109)

The super Virasoro algebra is (half of) the asymptotic symmetry algebra of three-
dimensional supergravity with Brown–Henneaux boundary conditions [44, 45] (see
also [46]). In that context the vector field X is one of the components of an asymptotic
Killing vector field (8.30), while S is one of the components of an asymptotic Killing
spinor. The fact that the quantization of three-dimensional supergravity produces

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_8
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super Virasoro representations was verified in [6] by showing that the one-loop par-
tition function of supergravity on thermal AdS3 coincides with the vacuum character
of two super Virasoro algebras. In the remainder of this section our goal is to describe
the flat analogue of these results.

Supersymmetric BMS3 Groups

Equipped with the definition of super semi-direct products and that of the super
Virasoro algebra, we can now define the N = 1 super BMS3 group [34, 35]: it is a
super semi-direct product (11.100) whose even piece is the BMS3 group (9.58), and
whose odd subspace is the space of densities F−1/2(S1) with the bracket {S, T } =
S⊗T . In other words, the (centreless) super bms3 algebra is a super semi-direct sum

sbms3 = Vect(S1) �

(
Vect(S1)Ab ⊕ F−1/2

)
, (11.110)

where Vect(S1)Ab ⊕ F−1/2 may be seen as an Abelian version of sVect(S1).
Again, choosing periodic/antiperiodic boundary conditions for F−1/2 yields the
Ramond/Neveu–Schwarz sector of the theory (respectively). Central extensions can
be included as in (9.62) and lead to a supersymmetric version of the centrally extended
algebra (9.64). The elements of the resulting super Lie algebra ŝbms3 are 5-tuples
(X,λ;α, S,μ), where (X,α, S) belongs to sbms3 and λ,μ are real numbers, with a
super Lie bracket that extends (9.46):

[
(X, λ;α, S, μ), (Y, κ;β, T, ν)

}
=

=
(
[X, Y ], c(X, Y ); [X, β] − [Y,α], X · T − Y · S; c(X, β) − c(Y,α) + h(S, T )

)
.

(11.111)
Here c is again the Gelfand–Fuks cocycle (6.43) while h is given by (11.108). Upon
introducing generators analogous to (9.67), the central charges (9.47) and Qr ≡
(0, 0; 0, eirϕ(dϕ)−1/2, 0), one finds the brackets (9.68) supplemented with

i[Jm,Qr } =
(m
2

− r
)
Qm+r , (11.112a)

i[Pm,Qr } = 0 , (11.112b)

[Qr ,Qs} = Pr+s + Z2

6
r2δr+s,0 . (11.112c)

The indices r , s are integers/half-integers in the Ramond/Neveu–Schwarz sector,
respectively. Note that the centrally extended bracket of supercharges only involves
the central charge Z2 that pairs superrotations with supertranslations.

In the gravitational context, the functions X and α generate superrotations and
supertranslations, while S(ϕ) generates local supersymmetry transformations that
becomeglobal symmetries upon enforcing suitable boundary conditions on the fields.
The surface charge associated with (X,α, S) then takes the form [34]

http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_9
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Q(X,α,S)[ j, p,ψ] = 1

2π

∫ 2π

0
dϕ
[
X (ϕ) j (ϕ) + α(ϕ)p(ϕ) + S(ϕ)ψ(ϕ)

]
, (11.113)

where j and p are the angular momentum and Bondi mass aspects of (9.25), while
ψ(ϕ) is one of the subleading components of the gravitino at null infinity. The triple
( j, p,ψ) is a coadjoint vector for the (centrally extended) super BMS3 group. In
particular ( j, p) are quadratic densities, while ψ(ϕ) has weight 3/2 on the circle.
Upon using formula (11.41), the charges (11.113) satisfy the algebra (11.111) with
definite values Z1 = 0, Z2 = c2 = 3/G for the central charges. Note that the
gravitino naturally satisfies Neveu–Schwarz boundary conditions on the celestial
circle, as it represents Lorentz transformations up to a sign.

The construction of the super BMS3 group can be generalized in a straightforward
way. Indeed, let G be a (bosonic) group, g its Lie algebra, sg a super Lie algebra
whose even subalgebra is g. Then one can associate with G a (bosonic) exceptional
semi-direct product G � g — the even B̂MS3 group (9.62) is of that form, with G
the Virasoro group. Now let sgAb denote the “Abelian” super Lie algebra which is
isomorphic to sg as a vector space, but where all brackets involving elements of g
are set to zero. One may then define a super semi-direct product

(
G � g, g � sgAb

)
(11.114)

where we use the notation (11.100). This structure appears to be ubiquitous in three-
dimensional, asymptotically flat supersymmetric higher-spin theories.

11.4.3 Supersymmetric BMS3 Particles

Unitary representations of the super BMS3 group can be classified along the lines
explained in Chap.10. In the remainder of this section we describe this classification
and use it to evaluate characters of the centrally extended super BMS3 group. We
conclude with the observation that these characters reproduce one-loop partition
functions of three-dimensional asymptotically flat supergravity and hypergravity.

Admissible super BMS3 Orbits

The unitary representations of super BMS3 are classified by the same supermomen-
tum orbits as in the purely bosonic case, i.e. coadjoint orbits of the Virasoro group.
However, supermomenta that do not satisfy condition (11.102) are forbidden, so our
first task is to understand which orbits are admissible. To begin, recall that the admis-
sibility condition (11.102) is invariant under superrotations. Thus, if we consider a
supermomentum orbit containing a constant p0 say, the supermomenta on the orbit
will be admissible if and only if p0 is. Including the central charge c2, we ask: which
pairs (p0, c2) are such that

〈(p0, c2), {S, S}〉 ≥ 0 for any S ∈ F−1/2(S
1) ? (11.115)

http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_9
http://dx.doi.org/10.1007/978-3-319-61878-4_10
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Here 〈·, ·〉 is the pairing (6.111) of centrally extended supermomenta with centrally
extended supertranslations. Using the super Lie bracket (11.111), we find

〈(p0, c2), {S, S}〉 = 1

2π

∫ 2π

0
dϕ
(
p0(S(ϕ))2 + c2

6
(S′(ϕ))2

)
. (11.116)

Since the term involving (S′)2 can be made arbitrarily large while keeping S2 arbi-
trarily small, a necessary condition for (p0, c2) to be admissible is that c2 be non-
negative. Already note that this condition did not arise in the bosonic BMS3 group.
The admissibility condition on p0, on the other hand, depends on the sector under
consideration:

• In the Ramond sector, S(ϕ) is a periodic function on the circle. In particular,
S(ϕ) = const. is part of the supersymmetry algebra, so for expression (11.116) to
be non-negative for any S, we must impose p0 ≥ 0.

• In the Neveu–Schwarz sector, S(ϕ) is antiperiodic (i.e. S(ϕ + 2π) = −S(ϕ)) and
can be expanded in Fourier modes as

S(ϕ) =
∑
n ∈Z

sn+1/2 e
i(n+1/2)ϕ. (11.117)

Then expression (11.116) becomes

〈(p0, c2), {S, S}〉 =
∑
n ∈Z

[
p0 + c2

6
(n + 1/2)2

]
|sn+1/2|2, (11.118)

and the admissibility condition amounts to requiring all coefficients in this series
to be non-negative, which gives

p0 ≥ − c2
24

. (11.119)

These bounds are consistent with earlier observations in three-dimensional super-
gravity [34], according to which Minkowski space-time (corresponding to p0 =
−c2/24) realizes the Neveu–Schwarz vacuum, while the Ramond vacuum is real-
ized by the null orbifold (corresponding to p0 = 0). Analogous results hold in AdS3
[46]. More general admissibility conditions can presumably be worked out for non-
constant supermomenta by adapting the proof of the positive energy theorem of
Sect. 7.3, but we will not address this question here.

Super BMS3 Multiplets

As explained around (11.103), any unitary representation of super BMS3 based on
a supermomentum orbit Op comes equipped with a representation τ of the Clifford
algebra

Cp = T
(F−1/2(S

1)
)
/
{
S2 − 〈(p, c2), {S, S}〉} . (11.120)

http://dx.doi.org/10.1007/978-3-319-61878-4_6
http://dx.doi.org/10.1007/978-3-319-61878-4_7
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Let us build such a representation. For definiteness we work in the Neveu–Schwarz
sector and take p to be a constant admissible supermomentum p0 = M−c2/24 with
M > 0, whose little group is U(1). Then the bilinear form (11.118) is non-degenerate
and the representation τ of the Clifford algebra (11.120) must be such that

τ [Qr ] · τ [Qs] + τ [Qs] · τ [Qr ] =
(c2
6

(r2 − 1/4) + M
)

δr+s,0 , r, s ∈ Z + 1/2.

(11.121)
In order to make τ irreducible, we start with a highest-weight state |0〉 such that
τ [Qr ]|0〉 = 0 for r > 0, and generate the space of the representation by its “descen-
dants” τ [Q−r1 ]...τ [Q−rn ]|0〉, with 0 < r1 < · · · < rn . It follows from theLie brackets
(11.112) that each descendant state has spin s +∑n

i=1 ri , where s is the spin of the
state |0〉; this observation uniquely determines the little group representationR0 sat-
isfying (11.104). Thus, a super BMS3 particle consists of infinitely many particles
with spins increasing from s to infinity.

A similar construction can be carried out for the vacuum supermomentum at
M = 0, with the subtlety that the Clifford algebra (11.120) (or equivalently (11.121))
is degenerate. As explained below (11.103), one needs to quotient (11.120) by the
radical of the bilinear form (11.118), resulting in a non-degenerate Clifford algebra
C̄p. In the case at hand this algebra is generated by supercharges Qr with |r | > 1,
and the representation τ must satisfy (11.121) with M = 0 and |r |, |s| > 1. The
remainder of the construction is straightforward: starting from a state |0〉 with, say,
vanishing spin, one generates the space of the representation by acting on it with
τ [Q−r ]’s, where r > 1. The vacuum representation of super BMS3 thus contains
infinitely many “spinning vacua” with increasing spins.

Characters

The Fock space representations just described can be used to evaluate characters. For
example, in the massive case with spin s one finds the supersymmetric little group
character

tr
[
eiθJ0

] = eisθ
[
1 + eiθ/2 + e3iθ/2 + e2iθ + · · · ] = eisθ

+∞∏
n=1

(
1 + ei(n−1/2)(θ+iε)

)
,

(11.122)
where we have added a small imaginary part to θ to ensure convergence of the
product; the trace is taken in the fermionic Fock space associated with the “highest-
weight state” |0〉. The vacuum case is similar, except that the product would start
at n = 2 rather than n = 1 (and s = 0). Note that (11.122) explicitly breaks
parity invariance; this can be fixed by replacing the parity-breaking Fock space
representations τ described above by parity-invariant tensor products τ ⊗ τ̄ , where τ̄
is the same as τ with the replacement ofQr byQ−r . The trace of a rotation operator
in the space of τ ⊗ τ̄ then involves the norm squared of the product appearing in
(11.122).

As explained at the beginning of Sect. 11.4.2, the character of an induced repre-
sentation of a super semi-direct product takes the same form (4.33) as in the bosonic

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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case, but with the character of R replaced by that of a (reducible) representation
R0 ⊗R compatible with the Clifford algebra representation τ . We thus find that the
character of a rotation by θ (together with a Euclidean time translation by β), in the
parity-invariant vacuum representation of the N = 1, Neveu–Schwarz super BMS3
group, reads

χsuper BMS
vac [(rotθ, iβ)] = χBMS

vac [(rotθ, iβ)] ·
+∞∏
n=2

|1 + ei(n−1/2)(θ+iε)|2

= eβc2/24
+∞∏
n=2

|1 + ei(n−1/2)(θ+iε)|2
|1 − ein(θ+iε)|2 . (11.123)

Comparing with (11.37) and (11.99), we recognize the product of the (suitably reg-
ularized) partition functions of two massless fields with spins 2 and 3/2, that is, the
one-loop partition function of N = 1 supergravity in three-dimensional flat space.

Higher-Spin Supersymmetry and Hypergravity

In [36, 37], the authors considered a three-dimensional hypergravity theory con-
sisting of a metric coupled to a single field with half-integer spin s + 1/2, with s
larger than one. Upon imposing suitable asymptotically flat boundary conditions,
they found that the asymptotic symmetry algebra spans a superalgebra that extends
the bosonic bms3 algebra by generators Qr of spin s + 1/2. The one-loop parti-
tion function of that system is the product of the graviton partition function (see
Eq. (11.37) for s = 2) with the fermionic partition function (11.99). We now show
that this partition function coincides with the vacuum character of the corresponding
asymptotic symmetry group (in the Neveu–Schwarz sector).

The irreducible, unitary representations of the asymptotic symmetry group of [37]
are classified by the same orbits and little groups as for the standard BMS3 group.
In particular, we can consider the orbit of a constant supermomentum p0 = M −
c2/24; the associated Clifford algebra representation τ mentioned below (11.103)
then satisfies a natural generalization of Eq. (11.121) (see Eq. (7.23) in [37]):

τ [Qr ]τ [Q�] + τ [Q�]τ [Qr ] =
s−1∏
j=0

(
c2
6

(
r2 − (2 j + 1)2

4

)
+ M

)
δr+�,0 , (11.124)

where r and � are integers or half-integers, depending on the sector under con-
sideration (Ramond or Neveu–Schwarz, respectively). In order for the orbit to be
admissible in the sense of (11.102), the value of M must be chosen so as to ensure
that all coefficients on the right-hand side of (11.124) are non-negative. In particular,
the vacuum value M = 0 is admissible in the Neveu–Schwarz sector, in which case
the anticommutators {τ [Qr ], τ [Q−r ]} vanish for |r | = 1/2, . . . , s − 1/2. Thus, in
the Neveu–Schwarz vacuum, the Clifford algebra (11.124) degenerates and τ must
really be seen as a representation of the non-degenerate subalgebra generated by
the Qr ’s with |r | ≥ s. The corresponding Fock space representation can be built as
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explained below (11.121), and the spins of the basis states in this representation are
uniquely determined by the fact that theQr ’s have spin s + 1/2. The corresponding
Fock space character is thus

tr
[
eiθJ0

] =
+∞∏

n=s+1

(
1 + ei(n−1/2)(θ+iε)

)
, (11.125)

which generalizes (11.122). The character for τ ⊗ τ̄ is the squared norm of this
expression, and the resulting vacuum character of the hypersymmetric BMS3 group
is

χhyper BMS
vac [(rotθ, iβ)] = eβc2/24

+∞∏
n=s

|1 + ei(n+1/2)(θ+iε)|2
+∞∏
m=2

|1 − eim(θ+iε)|2
. (11.126)

As announced earlier, this coincideswith the (suitably regularized) one-loop partition
function of asymptotically flat gravity coupled to a massless field with spin s + 1/2.
We have thus completed our overview of the relation between BMS3 characters and
one-loop partition functions in three dimensions.

Appendix A: From Mixed Traces to Bosonic Characters*

This section and the next one are technical appendices that describe various compu-
tations concerned with characters of highest-weight representations of SO(n). These
considerations are useful for Sects. 11.1.2 and 11.4.1. Other than that, they may be
skipped on a first reading.

Mixed Traces and Symmetric Polynomials

In this part of the appendix we prove that the mixed trace (11.19) of Iμs ,αs in D
dimensions coincides with a certain difference of complete homogeneous symmetric
polynomials in the traces of J n as given by

χs[n �θ ] = hs(J
n) − hs−2(J

n) , (11.127)

where

hs(J
n) =

∑
m1,...,ms∈N

m1+2m2+···+sms= s

[
s∏

k=1

(
Tr[(J n)k])mk

mk !kmk

]
. (11.128)

By definition, the complete homogeneous symmetric polynomial of degree s in D
complex variables λ1, . . . ,λD is
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hs(λ1, . . . ,λD) =
s∑

�1,...,�D= 0
�1+···+�D= s

λ�1
1 λ�2

2 ...λ�D
D =

∑
1≤�1≤�2≤...≤�s≤D

λ�1λ�2 ...λ�s .

(11.129)
Using the variant of Newton’s identities

hs(λ1, . . . ,λD) = 1

s

s∑
N=1

hs−N (λ1, . . . ,λD)(λN
1 + · · · + λN

D) , (11.130)

one can show by recursion (see e.g. [47, p. 24f]) that the polynomial (11.129) can
equivalently be written as in (11.128):

hs(λ1, . . . ,λD) =
∑

m1,...,ms∈N

m1+2m2+···+sms= s

s∏
k=1

(λk
1 + · · · + λk

D)mk

mk ! kmk
. (11.131)

We shall use this relation later. To prove (11.127), we start with the following:

Lemma Let J be a complex D × D matrix with eigenvalues λ1, . . . ,λD . Then,

(δμα)
s 1

s!
(
Jμα

)s = hs(λ1,λ2, . . . ,λD) , (11.132)

where we use the same notation for contracting symmetrized indices as in (11.13).

Proof The left-hand side of (11.132) can be seen as a trace over symmetric tensor
powers of J . Indeed, δμα Jμα = Tr(J ) is clear; as for 1

2 (δμα)2
(
Jμα

)2
, one gets

1

2

(
δμα)2 (Jμα

)2 = 1

2

(
Tr(J )2 + Tr

(
J2
))

= Tr
(
S2(J )

)
= 1

2

2∑
i=1

Tr
(
J i
)
Tr
(
S2−i (J )

)
,

(11.133)
where Sk(J ) is the k th symmetric tensor power of J . One then defines recursively

1

s! (δμα)
s (Jμα

)s = Tr
(
Ss(J )

) = 1

s

s∑
i=1

Tr
(
J i
)
Tr
(
Ss−i (J )

)
, (11.134)

so that 1
s! (δμα)s

(
Jμα

)s
is just a trace in the s th symmetric tensor power of the D-

dimensional vector space V on which Jμα acts as a linear operator. Now consider
an eigenbasis {e1, . . . , eD} for Jμα, with J · ek = λkek . Since 1

s!
(
Jμα

)s
is the s th

symmetric tensor power of Jμα one can construct an eigenbasis for 1
s!
(
Jμα

)s
by

symmetrizing ek1 ⊗ ek2 ⊗ ... ⊗ ekD , with k1 ≤ k2 ≤ · · · ≤ kD . These eigenvectors
have eigenvalues λl1λl2 ...λlD , and since (δμα)s 1

s!
(
Jμα

)s
is the trace of 1

s!
(
Jμα

)s
,

relation (11.132) follows upon using the second expression of hs(λ1, . . . ,λD)

in (11.129). �
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We can now turn to the proof of (11.127). To this end we fix conventionally the
number of terms entering the contraction of two symmetrized expressions as fol-
lows. Objects with lower indices are symmetrized with the minimum number of
terms required and without overall normalization factor, while objects with upper
indices are not symmetrized at all, since the symmetrization is induced by the con-
traction. This specification is needed because terms with lower and upper indices in
a contraction may have a different index structure and therefore the number of terms
needed for their symmetrization may be different. For instance

AμBμCμDμμEμ ≡ AμBνCρ (DμνEρ + DνρEμ + DρμEν
)

= 1

2

(
AμBνCρ + Aν BρCμ + AρBμCν + AμBρCν + AρBνCμ + Aν BμCρ) DμνEρ .

(11.135)
In order to simplify computations, we define

Tμs ,αs ≡ Jμα...Jμα , T [s] ≡ Tμs , αs (δμα)
s , (11.136)

which implies the contraction rules

δμμTμs , αs = 2 δααTμs−2,αs−2 , δααTμs ,αs = 2 δμμTμs−2,αs−2 . (11.137)

In terms of the tensors Tμs ,αs , the mixed trace (11.19) can be written as

χs[n �θ] = 1

s! Tμs ,βs

[(
δμβ
)s+

� s
2 �∑

m=1

(−1)m s! [D + 2 (s − m − 2)]!!
2mm! (s − 2m)! [D + 2 (s − 2)]!!× (11.138)

× (δμμ)m(δμβ)s−2m(δββ)m
]

(11.137)= 1

s! T
[s] +

[ s
2 ]∑

m=1

(−1)m [D + 2 (s − m − 2)]!!
2m−1m! (s − 2m)! [D + 2 (s − 2)]!!× (11.139)

× (δμμ)m(δμβ)s−2m(δββ)m−1δμμTμs−2,βs−2 . (11.140)

To compute the trace of the (δμμ)m(δμβ)s−2m(δββ)m−1 terms, we first change our
symmetrization from δμμTμs−2,βs−2 (which contains s!

2(s−2)! terms) to the aforemen-
tioned product of δ’s. In doing so one has to introduce a factor accounting for the
number of terms in each structure as

δμμTμs−2,βs−2 � s!
2(s − 2)! terms, (11.141a)

(δμμ)
mu (δμβ

)s−2m (
δββ
)m−1 � s!

2mm! × (s − 2)!
2m−1(m − 1)!(s − 2m)! terms,

(11.141b)
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which implies

χs[n �θ] = 1

s!T
[s] +

� s
2 �∑

m=1

(−1)m 2m−1(m − 1)! [D + 2 (s − m − 2)]!!
[(s − 2)!]2 [D + 2 (s − 2)]!! ×

×δmμμδ
s−2m
μβ δm−1

ββ δμμT μs−2,βs−2 .

(11.142)

Taking into account the correct combinatorial factors one obtains

δmμμδ
s−2m
μβ δm−1

ββ δμμ = [D + 2(s − m − 1)] δm−1
μμ δs−2m

μβ δm−1
ββ + 2m δmμμδ

s−2m−2
μβ δmββ ,

(11.143)
which then yields

χs [n�θ] = 1

s! T
[s] +

⎛
⎝

� s
2 �∑

m=1

(−1)m 2m−1(m − 1)! [D + 2 (s − m − 1)]!!
[D + 2 (s − 2)]!! δm−1

μμ δs−2m
μβ δm−1

ββ

+
� s
2 �−1∑
m=1

(−1)m 2mm! [D + 2 (s − m − 2)]!!
[D + 2 (s − 2)]!! δmμμδs−2m−2

μβ δmββ

⎞
⎠ 1

[(s − 2)!]2 Tμs−2,βs−2 .

(11.144)

Shifting m → m + 1 in the upper sum one can see that both sums are identical apart
from the overall sign and the lower extremum. Thus (11.144) boils down to

χs[n �θ] = 1

s! T
[s] − 1

[(s − 2)!]2 δs−2
μβ T μs−2,βs−2 = 1

s! T
[s] − 1

(s − 2)! T
[s−2] .

(11.145)
Now using (11.136) and (11.132) one obtains

χs[n �θ] = 1

s! T
[s] − 1

(s − 2)! T
[s−2] = hs(λ1,λ2, . . . ,λD) − hs−2(λ1,λ2, . . . ,λD) ,

(11.146)
where λ1, . . . ,λD are the eigenvalues of J n . (These eigenvalues are e±inθ j for j =
1, . . . , r , and one or two unit eigenvalues depending on whether D is odd or even,
respectively.) This leads to the desired result: since traces of powers of J n can be
written as

Tr[(J n)k] = λk
1 + · · · + λk

D (11.147)

in terms of the eigenvalues of J n , the complete homogeneous symmetric polynomials
expressed as (11.131) exactly coincide with the combination (11.128), and equation
(11.146) coincides with (11.127).

Symmetric Polynomials and SO(D) Characters

In this part of the appendix we review the relation between complete homogeneous
symmetric polynomials and characters of orthogonal groups. Most of the explicit
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proofs can be found in [48], Chap. 24, to which we refer for details on our arguments
below. We study separately the cases of odd and even D and let r ≡ �(D − 1)/2�,
with θ1, . . . , θr the non-vanishing angles appearing in the rotations (11.8).

Odd D

We consider the Lie algebra so(D) = so(2r + 1), with rank r . Choosing a basis
of C

2r+1 such that the Lie algebra so(2r + 1)C can be written in terms of complex
matrices, wemay choose the Cartan subalgebra to be the subalgebra h of so(2r+1)C
consisting of diagonal matrices. As a basis of h we choose the matrices Hi whose
entries all vanish, except the (i, i) and (r + i, r + i) entries which are 1 and −1,
respectively (with i = 1, . . . , r ). In our convention (11.7), the operator Hi generates
rotations in the plane (xi , yi ). Then, calling Li the elements of the dual basis (such
that 〈Li , Hj 〉 = δi j ), a dominant weight is one of the form λ = λ1L1 + · · · λr Lr ≡
(λ1, . . . ,λr ) with λ1 ≥ · · · ≥ λr ≥ 0.

Let λ be a dominant weight for so(2r + 1). According to formula (24.28) in [48],
the character of the irreducible representation of so(2r + 1) with highest weight λ is

χ(2r+1)
λ [q1, . . . , qr ] = Trλ

[
qH1
1 · · · qHr

r

]
=
∣∣∣qλi+r−i+ 1

2
j − q

−(λi+r−i+ 1
2 )

j

∣∣∣∣∣∣qr−i+ 1
2

j − q
−(r−i+ 1

2 )
j

∣∣∣
,

(11.148)
where q1, · · · qr are arbitrary complex numbers,4 Trλ denotes a trace taken in the
space of the representation, and

∣∣Ai j

∣∣ denotes the determinant of the matrix A with
rows i and columns j . This expression is a corollary of the Weyl character formula.
Using proposition A.60 and Corollary A.46 of [48], it can be rewritten as

χ(2r+1)
λ [q1, . . . , qr ] = ∣∣hλi−i+ j − hλi−i− j

∣∣ , (11.149)

where h j = h j
(
q1, . . . , qn, q

−1
1 , . . . , q−1

n , 1
)
is a complete homogeneous symmetric

polynomial of degree j in 2r + 1 variables. In particular, for a highest weight λs =
(s, 0, . . . , 0) (where s is a non-negative integer), the matrix appearing on the right-
hand side of (11.149) is upper triangular, with the entry at i = j = 1 given by
hs − hs−2 and all other entries on the main diagonal equal to one. Accordingly, the
determinant in (11.149) boils down to hs − hs−2 in that simple case. For the rotation
(11.8) we may identify q j = einθ j , and we conclude that

χ(2r+1)
λs

[n �θ] =
∣∣sin [(λi + r − i + 1

2

)
nθ j
]∣∣∣∣sin [(r − i + 1

2

)
nθ j
]∣∣ = hs(J

n) − hs−2(J
n) , (11.150)

whereλi = s δi1. Thus for odd D the differenceof symmetric polynomials in (11.127)
is just a character of SO(D).

4Eventually these numbers will be exponentials of angular potentials, so they are fugacities associ-
ated with the rotation generators Hi .
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Even D

We now turn to the Lie algebra so(2r + 2), with rank r + 1. As in the odd case
we choose a basis of C

2r+2 such that we can write the Lie algebra so(2r + 2) in
terms of complex matrices and the Cartan subalgebra is generated by r + 1 diagonal
matrices Hi whose entries all vanish, except (Hi )i i = 1 and (Hi )r+1+i,r+1+i = −1.
We call Li the elements of the dual basis, and with these conventions a weight
λ = λ1L1 + . . .+λr+1Lr+1 ≡ (λ1, . . . ,λr+1) is dominant if λ1 ≥ λ2 ≥ · · · ≥ λr ≥
|λr+1|.

Let λ be a dominant weight for so(2r + 2). Then formula (24.40) in [48] gives
the character of the associated highest-weight representation as

χ(2r+2)
λ [q1, . . . , qr+1] = Trλ

[
qH1
1 · · · qHr+1

r+1

]

=
∣∣∣qλi+r+1−i

j + q−(λi+r+1−i)
j

∣∣∣+
∣∣∣qλi+r+1−i

j − q−(λi+r+1−i)
j

∣∣∣∣∣∣qr+1−i
j + q−(r+1−i)

j

∣∣∣ ,
(11.151)

where we use the same notations as in (11.148), except that now i, j = 1, . . . , r +1.
Note that the second term in the numerator of this expression vanishes whenever
λr+1 = 0 (because the (r+1)th row of the matrix qλi+r+1−i

j −q−(λi+r+1−i)
j vanishes).

Since this is the case that we will be interested in, we may safely forget about that
second term from now on. Alternatively, for the mixed traces (11.19) that we need,
we may take q j = einθ j for j = 1, . . . , r and qr+1 = 1 without loss of generality, so
that this second term vanishes again. Using proposition A.64 of [48], one can then
rewrite (11.151) as

χ(2r+2)
λ [q1, . . . , qr , 1] = ∣∣hλi−i+ j − hλi−i− j

∣∣ , (11.152)

where h j = h j
(
q1, . . . , qr , 1, q

−1
1 , . . . , q−1

r , 1
)
. Finally, using the same arguments

as for odd D, one easily verifies that the determinant on the right-hand side of (11.152)
reduces once more to hs − hs−2 for a highest weight λs = (s, 0, . . . , 0). Writing
again q j = einθ j , one concludes that, for even D,

χ(2r+2)
λs

[
nθ1, . . . , nθr , nθr+1 = 0

] =
∣∣cos [(λi + r + 1 − i) nθ j

]∣∣∣∣cos [(r + 1 − i) nθ j
]∣∣

∣∣∣∣
θr+1=0

= hs(J
n) − hs−2(J

n),

(11.153)
where λi = s δi1. This concludes the proof of (11.21). Note that, for non-vanishing
θr+1, the quotient of denominators in the middle of (11.153) is actually the char-
acter χ(2r+2)

λs
(nθ1, . . . , nθr , nθr+1). This detail will be useful in Appendix section

“Differences of SO(D) Characters”.

Differences of SO(D) Characters

In this part of the appendix we prove the following relations between characters of
orthogonal groups:
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χ(2r+1)
λs

[�θ ] − χ(2r+1)
λs−1

[�θ ] = χ(2r)
λs

[�θ ] , (11.154a)

χ(2r)
λs

[�θ ] − χ(2r)
λs−1

[�θ ] =
r∑

k=1

Ar
k[�θ ]χ(2r−1)

λs
[θ1, . . . , θ̂k, . . . , θr ] . (11.154b)

Here �θ = (θ1, .., θr ), λs is the weight with components (s, 0, . . . , 0) in the basis
defined above Eqs. (11.148) and (11.151), and the hat denotes omission of an argu-
ment, while the coefficientsAr

k are the quotients of determinants defined in (11.31).
Note that, when one of the angles θ1, . . . , θr vanishes, say θ� = 0, then Ar

k = δk�
and relation (11.154b) reduces to

χ(2r)
λs

[�θ ]
∣∣∣
θ�=0

− χ(2r)
λs−1

[�θ ]
∣∣∣
θ�=0

= χ(2r−1)
λs

[θ1, . . . , θ̂�, . . . , θr ] . (11.155)

Proof of (11.154) We start by defining the matrices

(Ar )i j = sin
[
(r − i + 1

2 )θ j
]
, (Br )i j = cos

[
(r − i)θ j

]
, (11.156)

so that in particular

Ar
k(

�θ) = |Br |θk=0

|Br | . (11.157)

We shall also use the shorthand notation

Mr [θk] ≡ |Mi j (θ1, . . . , θk−1, θk+1, . . . , θr+1)| (11.158)

to denote the determinant of the r × r matrix missing the angle θk of any of the
matrices defined in (11.156). As a preliminary step towards the proof, we list the
four following identities:

|Ar |∏r
j=1 sin

(
θ j/2

) = 2r−1|Br | , (11.159a)

| cos [(r − i)θ j
] | = 2

(r−1)(r−2)
2

∏
1≤i< j≤r

(cos(θi ) − cos(θ j )) , (11.159b)

|Br |θk=0

Ar−1[θk] = 2r−1(−1)k+1
r∏
j=1
j 
=k

sin
(
θ j/2

)
, (11.159c)

|Br | =
r∑

k=1

|Br |θk=0 . (11.159d)

Here (11.159a) can be proven by induction on r upon expanding the determinant
|Ar (�θ)| along the first line of the matrix Ar . Property (11.159b) can be shown by
observing that
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cos[(r − i)θ j ] = 2r−i−1 cosr−i (θ j ) +
r−i−1∑
k=1

ck cos(kθ j ) (11.160)

with some irrelevant real coefficients ck , and that the contribution of the second
term of this expression to the determinant | cos[(r − i)θ j ]| vanishes by linear depen-
dence. Equation (11.159c) then follows from (11.159a) and (11.159b),while property
(11.159d) can again be proved by induction on r .

Thanks to Eq. (11.159), we can tackle the proof of (11.154). Equation (11.154a) is
easy: using expression (11.150) for the character χ(2r+1)

λs
, we can write the difference

of characters on the left-hand side of (11.154a) as

χ(2r+1)
λs

− χ(2r+1)
λs−1

=

r∑
k=1

(−1)k+12 cos[(s + r − 1)θk] sin (θk/2) Ar−1[θk]
|Ar | .

(11.161)
Property (11.159a) then allows us to reduce this expression to the quotient of denom-
inators appearing in the middle of Eq. (11.153) (with the replacement of r + 1 by r
and all angles non-zero), which is indeed the sought-for character χ(2r)

λs
[�θ ].

Equation (11.154b) requires more work. Using once more the expression in the
middle of (11.153), we first rewrite the left-hand side of (11.154b) as

χ(2r)
λs

− χ(2r)
λs−1

=

r∑
k=1

(−1)k+1(−2 sin[(s + r − 3
2 )θk] sin (θk/2) Br−1[θk]

|Br | . (11.162)

Let us now recover this expression as a combination of characters of SO(2r − 1):
using formula (11.150) and the identities (11.159), one finds

r∑
k=1

χ(2r−1)
λs

[θ1, . . . , θ̂k, . . . , θr ]|Br |θk=0

(11.159c)=
r∑

k=1

(−1)k+12r−1
r∏
j=1
j 
=k

sin
(
θ j/2

)×

×
[ k−1∑

j=1

(−1) j+1 sin[(s + r − 3
2 )θ j ]Ar−2[θ j , θk]

+
r∑

j=k+1

(−1) j sin[(s + r − 3
2 )θ j ]Ar−2[θ j , θk]

]

(11.159a)=
r∑

k=1

(−1)k+122r−4 sin[(s + r − 3
2 )θk] sin (θk/2) ×
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×
[ k−1∑

j=1

(−1) j Br−2[θ j , θk]
r∏

i=1
i /∈{ j,k}

sin2 (θi/2)

+
r∑

j=k+1

(−1) j+1Br−2[θ j , θk]
r∏

i=1
i /∈{ j,k}

sin2 (θi/2)

]

(11.159b)=
r∑

k=1

(−1)k+1(−2) sin[(s + r − 3
2 )θk] sin (θk/2)

⎡
⎣k−1∑

j=1

(−1) j Br−1[θk]
∣∣
θ j=0 +

r∑
j=k+1

Br−1[θk]
∣∣
θ j=0

⎤
⎦

(11.159d)=
r∑

k=1

(−1)k+1(−2) sin[(s + r − 3
2 )θk] sin (θk/2) B

r−1[θk]. (11.163)

This coincides with the numerator of the right-hand side of (11.162), so identity
(11.154b) follows with Ar

k given by (11.157). �
From SO(D) to SO(D − 1)

In this appendix we prove relation (11.33) between characters of SO(D) and
SO(D − 1):

Lemma One has the following relations:

χ(2r+1)
λs

[θ1, . . . , θr ] =
s∑

j=0

χ(2r)
λ j

(θ1, . . . , θr ), (11.164a)

χ(2r)
λs

[θ1, . . . , θr ] =
s∑

j=0

r∑
k=1

Ar
k(

�θ)χ(2r−1)
λ j

[θ1, . . . , θ̂k, . . . , θr ]. (11.164b)

Here λ j is the weight ( j, 0, . . . , 0) as explained above (11.21) or below (11.149),
andAr

k(
�θ) is the quotient (11.31) or (11.157). Since the proofs of these two identities

are very similar, we will only display the proof of (11.164a).

Proof of (11.164a) Equation (11.164a) can be written as

r∑
k=1

(−1)k+1 sin[(s + r − 1
2 )θk ]Ar−1[θk ]

|Ar |
(11.159a)=

s∑
j=0

r∑
k=1

(−1)k+1 cos[( j + r − 1)θk ]Br−1[θk ]
|Br | ,

(11.165)
where we used formulas (11.150) and (11.153) for the characters, as well as the
definition (11.156) of Ar and Br . One can then use identities (11.159a) and (11.159c)
to match the right-hand side of this expression with the left-hand side, proving the
desired identity. �
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Appendix B: From Mixed Traces to Fermionic Characters*

This appendix is the fermionic (half-integer spin) analogue of section “From Mixed
Traces to Bosonic Characters”. It may be skipped in a first reading.

Mixed Traces and Symmetric Polynomials

Our goal here is to prove the first equality of (11.95), following the same method
as in Appendix section “Mixed Traces and Symmetric Polynomials” for the bosonic
case. First, using the definition (11.91) of U and the contraction rules (11.137), one
can write (11.94) as

χ(F)
s [n �θ] =

[
1

s!T
[s] +

� s
2 �∑

m=1

(−1)m[D + 2(s − m − 1)]!!
2m−1m!(s − 2m)![D + 2(s − 1)]!!×

× (δμμ)m(δμβ)s−2m(δββ)m−1δμμTμs−2,βs−2

]
Tr[Un]

+
� s−1

2 �∑
m=0

(−1)m+1[D + 2(s − m − 2)]!!
2mm!(s − 2m − 1)![D + 2(s − 1)]!!×

× Tr[Tμs−1,βs−1γμγ
μ(δμμ)m(δμβ)s−2m−1(δββ)mUn], (11.166)

where T [s] is the notation (11.136). In the first term of this expression, we shift the
symmetrization on the δ’s i.e. we exchange upper and lower indices while taking
into account the change in multiplicities of the terms involved; in all other terms, we
compute one contraction with δββ . Equation (11.166) then simplifies to

χ
(F)
s [n�θ] = 1

s! T
[s]Tr[Un ] − 1

[(s − 1)!]2[D + 2(s − 1)]Tr[T
μs−1,βs−1γμγμδs−1

μβ Un ]

+
� s
2 �∑

m=1

[
(−1)m2m−1(m − 1)![D + 2(s − m − 1)]!!

[(s − 2)!]2[D + 2(s − 1)]!! Tμs−2,βs−2δμμδmμμδs−2m
μβ δm−1

ββ Tr[Un ]

+ (−1)m+12m − 1(m − 1)![D + 2(s − m − 2)]!!
[(s − 2)!]2[D + 2(s − 1)]!! Tr[Tμs−2,βs−2δμμδmμμδs−2m−1

μβ δmββγμγβU
n ]
]

.

(11.167)

The γ traces and mixed traces can now be evaluated using

γμγμδ
s−1
μβ =[D + 2(s − 1)]δs−1

μβ − γμγβδs−2
μβ , (11.168a)

δμμδmμμδ
s−2m
μβ δm−1

ββ =[D + 2(s − m − 1)]δm−1
μμ δs−2m

μβ δm−1
ββ

+ 2m δmμμδ
s−2m−2
μβ δmββ, (11.168b)

δμμδmμμδ
s−2m−1
μβ δm−1

ββ γμγβ =[D + 2(s − m − 1)]δm−1
μμ δs−2m−1

μβ δm−1
ββ γμγβ

+ 4m δmμμδ
s−2m−2
μβ δmββ + 2m δmμμδ

s−2m−3
μβ δmββγμγβ,

(11.168c)
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which yields

χ(F)
s [n �θ] =

[
1

s!T
[s] − 1

(s − 1)!T
[s−1]

]
Tr[Un]

+ 1

[(s − 1)!]2[D + 2(s − 1)]Tr[T
μs−1,βs−1δs−2

μβ γμγβU
n]

− D + 2(s − 2)

[(s − 2)!]2[D + 2(s − 1)]T
μs−2,βs−2δs−2

μβ Tr[Un]

+ 1

[(s − 2)!]2[D + 2(s − 1)]Tr[T
μs−2,βs−2δs−3

μβ γμγβU
n]. (11.169)

Using (11.146) and the definition (11.91) ofU , together with some careful counting,
one verifies that this expression matches

[
hs(J n) − hs−1(J n)

]
Tr[Un], which was to

be proven.

Symmetric Polynomials and SO(D) Characters

In this part of the appendix we prove the second equality in (11.95), following
essentially the same steps as in Appendix section “Mixed Traces and Symmetric
Polynomials”. We refer again to [48] for details, and we write the components of
weights in the dual basis of the Cartan subalgebra described above (11.148) and
(11.151). We will consider separately odd and even space-time dimensions.

Odd D

The character of a half-spin representation of so(2r + 1) with a dominant highest
weight λ = (λ1 + 1

2 ,λ2 + 1
2 , . . . ,λr + 1

2 ) is [49, p.258f]

χ
(2r+1)
λ [θ1, . . . , θr ] =

∣∣sin [(λi + r − i + 1) θ j
]∣∣∣∣∣sin

[(
r − i + 1

2

)
θ j

]∣∣∣ =
⎛
⎝ r∏
i=1

2 cos
(

θi
2

)⎞⎠
∣∣sin [(λi + r − i + 1) θ j

]∣∣∣∣sin [(r − i + 1) θ j
]∣∣ .

(11.170)
Owing to expression (11.92) for the trace of Un , the second equality in (11.95) is
equivalent to

hs(J ) − hs−1(J ) =
∣∣sin [(λi + r − i + 1) θ j

]∣∣∣∣sin [(r − i + 1) θ j
]∣∣ (11.171)

for λi = sδi1. To prove this, consider the difference of the bosonic character (11.150)
and the right-hand side of (11.171):

∣∣sin[(λi + r − i + 1
2 )θ j ]

∣∣∣∣sin[(r − i + 1
2 )θ j ]

∣∣ −
∣∣sin[(λi + r − i + 1)θ j ]

∣∣∣∣sin[(r − i + 1)θ j ]
∣∣ . (11.172)
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Introducing the notation

(Ar )i j = 2 sin
[
(r − i + 1)θ j

]
, (Br )i j = 2 cos

[
(r − i + 1

2 )θ j
]

(11.173)

and in terms of (11.156), this difference can be written as

∑r
k=1(−1)k+1 sin[(s + r − 1

2 )θk ]Ar−1[θk ]
|Ar | −

∑r
k=1(−1)k+12 sin[(s + r)θk ]Ar−1[θk ]

|Ar |
(11.174)

upon expanding the determinants along the first row. Now it turns out that5

2r
∣∣Ar
∣∣ r∏
i=1

2 cos (θi/2) = |Ar |, 2r−1
∣∣Br
∣∣ r∏
i=1

2 cos (θi/2) = |Br |, (11.175)

and plugging this property in (11.174) one sees that (11.172) is just hs−1(J ) −
hs−2(J ). Since the first term of (11.172) equals hs(J )−hs−2(J ) by virtue of (11.150),
this proves (11.171).

Even D

The character of an irreducible representation of so(2r+2)with (dominant) highest-
weight λ = (λ1 + 1/2, . . . ,λr+1 + 1/2) can be written as [49, p. 258–259]

χ
(2r+2)
λ [θ1, . . . , θr ] =

∣∣∣cos
[(

λi + r − i + 3
2

)
θ j

]∣∣∣∣∣cos [(r − i + 1) θ j
]∣∣ =

r+1∏
i=1

2 cos
(

θi
2

) ∣∣∣cos
[(

λi + r − i + 3
2

)
θ j

]∣∣∣∣∣∣cos
[(
r − i + 3

2

)
θ j

]∣∣∣
,

(11.176)

where we are including the possibility of a non-zero angle θr+1 (while in (11.95) we
take θr+1 = 0). Taking into account (11.92), proving the second equality in (11.95)
amounts to showing that

hs(J ) − hs−1(J ) =
∣∣cos [(λi + r − i + 3

2

)
θ j
]∣∣∣∣cos [(r − i + 3

2

)
θ j
]∣∣

∣∣∣∣
θr+1=0

(11.177)

forλi = sδi1. To prove this we proceed as in the odd-dimensional case: the difference
of the bosonic character (11.153) and the right-hand side of (11.177),

∣∣cos[(λi + r − i + 1)θ j ]
∣∣∣∣cos[(r − i + 1)θ j ]

∣∣
∣∣∣∣∣
θr+1=0

−
∣∣cos[(λi + r − i + 3

2 )θ j ]
∣∣∣∣cos[(r − i + 3

2 )θ j ]
∣∣

∣∣∣∣∣
θr+1=0

, (11.178)

5See e.g. [49, p.259].



11.4 Super-BMS3 and Flat Supergravity 429

can be written as

⎡
⎢⎢⎢⎣

r+1∑
k=1

(−1)k+1 cos[(s + r)θk ]Br [θk ]
|Br+1| −

r+1∑
k=1

(−1)k+12 cos[(s + r + 1
2 )θk ]Br [θk ]

|Br+1|

⎤
⎥⎥⎥⎦

θr+1=0
(11.179)

upon expanding the determinants along the first row and using the notation (11.156)–
(11.173). One can then verify that this reduces to hs−1(J ) − hs−2(J ) by the same
argument as in the odd-dimensional case. By virtue of the second equality in (11.153),
this proves (11.177).
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Chapter 12
Conclusion

We have now completed our survey of the group-theoretic aspects of three-
dimensional gravity, and in particular of BMS symmetry in three dimensions. In
this conclusion we take one last look at what we have achieved.

Quantum Symmetries

The overarching theme of this thesis has been group theory and its application to
quantum systems with symmetries. Accordingly, parts I and II of this thesis were
devoted to a broad overview of group representations and geometry. In particular
we have motivated and introduced central extensions, defined induced representa-
tions, applied them to semi-direct products and relativistic symmetry groups, and
explained how classical mechanical systems with symmetries become symmetric
quantum systems upon “replacing Poisson brackets by commutators”. We have also
applied some of these tools to the Virasoro group — the symmetry group of two-
dimensional conformal field theories — and used it to analyse certain properties of
three-dimensional gravity on Anti-de Sitter backgrounds.

BMS3 Particles

Part III of the thesis was devoted to the application of group theoretic methods to
the study of asymptotically flat quantum gravity in three dimensions. In that context
our weapon of choice has been the BMS group in three dimensions, which we
have introduced as an asymptotic symmetry group in Chap. 9, before working out
its abstract definition independently of gravity. We have seen in particular that it
enjoys an exceptional structure of the type G � g, where G is the Virasoro group
spanned by superrotations while g is its Lie algebra, spanned by supertranslations.
A crucial implication of this structure was that irreducible unitary representations
of the BMS3 group, i.e. BMS3 particles, have supermomenta that span coadjoint
orbits of the Virasoro group. This observation has allowed us to classify all such
representations thanks to the classification of Virasoro orbits exposed earlier, in
Chap.7.
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We also observed that supermomentum orbits have a straightforward interpreta-
tion in gravity, since supermomenta coincide with Bondi mass aspects of asymp-
totically flat space-time metrics. As a result we interpreted BMS3 particles in two
equivalent ways: (i) as quantizations of orbits of asymptotically flat metrics under
BMS3 transformations, and (ii) as relativistic particles dressed with gravitational
boundary degrees of freedom. These topological degrees of freedom are the three-
dimensional analogue of soft gravitons, so a BMS3 particle is effectively a particle
dressed with soft gravitons.

As a confirmation of this interpretation, we evaluated BMS3 characters and
showed that they coincide with gravitational one-loop partition functions. On the
group-theoretic side this computation involves the Frobenius character formula
(4.33), which is essentially an integral of little group characters over a supermomen-
tum orbit. Remarkably, for non-zero angular potentials, we found that the integral
localizes to a single point on the supermomentum orbit, which allowed us to eval-
uate characters exactly. On the field-theoretic side the one-loop partition function
was evaluated using heat kernel methods which turn out, unsurprisingly, to be more
tractable in flat space than in Anti-de Sitter space.

Higher Spins and Supergravity

The study of thermodynamics has led us into higher-spin theories, whose partition
functions in flat space could be computed with little extra effort compared to the
gravitational case. We have used this computation as an excuse to investigate the
unitary representations of asymptotic symmetry algebras that occur in that context,
with methods and results very similar to those of the purely gravitational setting.
A striking aspect of these considerations was the fact that it enabled us to compare
ultrarelativistic and non-relativistic limits of conformal higher spins in a way that
pure gravity does not allow. In doing so we uncovered a sharp difference between the
two limits at the quantum level. As a corollary we concluded that flat space holog-
raphy should not be described as a Galilean conformal field theory.

We have similarly studied the supersymmetric generalization of BMS3 symmetry,
whose unitary representations are essentially super BMS3 multiplets consisting of
an infinite tower of BMS3 particles with increasing spins.

Is This Quantum Gravity?

In the introduction of the thesis we motivated the study of BMS symmetry by pre-
senting it as a way to tackle the quantization of gravity. This is a good moment to
ask to what extent this proposal has succeeded. To begin, we should realize that what
we have done is, indeed, a partial quantization of gravity: we have described almost
explicitly a family of Hilbert spaces endowed with operator algebras inherited from
gravitational symmetries, and we have used these Hilbert spaces to compute concrete
quantities such as partition functions. In this sense we have actually worked with a
partial version of quantum gravity.

This being said, one should not be overly enthusiastic about what we have
achieved: in essence we have worked out the flat space analogue of results that

http://dx.doi.org/10.1007/978-3-319-61878-4_4
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were mostly already known in the framework of AdS3/CFT2. In fact, in many cases
our results were flat limits of their AdS peers, although the BMS3 approach often
led us to consider slightly different questions and use somewhat different methods
than those suggested by conformal symmetries. Thus we have indeed made progress
in our understanding of flat space holography, but whether this opens new doors
towards quantum gravity is a whole other matter.

There are two simple arguments that showwhyourwork is notquitequantumgrav-
ity. First, what we have studied are irreducible unitary representations of asymptotic
symmetry groups, while realistic gravitational systems are expected to form highly
reducible representations. In essence, saying that we have studied quantum gravity
by studying irreducible representations of BMS3 would be tantamount to saying
that relativistic one-particle quantum mechanics is the same as quantum field theory,
which is of course untrue. Secondly, one should realize that our study of the sym-
metries of gravity hasn’t taught us anything about the microscopic details of gravity
itself. For instance, the fact that the phase space of gravity forms the coadjoint repre-
sentation of the asymptotic symmetry group is merely a restatement of the fact that
momentum maps belong to the coadjoint representation, which is a robust feature of
all symmetric phase spaces; it does not tell us anything about the details of gravity.

A Look Forward

Our observations on BMS particles in three dimensions have allowed us to describe
dressed particles in a group-theoretic framework. While we haven’t described inter-
acting particles in this thesis, it is likely that our methods do apply to such cases
as well. In particular, describing scattering phenomena in terms of BMS particles
instead of standard (naked) particles should incorporate soft graviton contributions.
In three dimensions this could presumably be used to describe, say, the merger of
two particles into a flat space cosmology; optimistically, BMS3 representationsmight
then even account for gravitational quantum corrections to such amplitudes! In four
dimensions the situation is much less well understood, for reasons that we alluded
to earlier. In that case the problem is much more basic, since the very definition of
BMS symmetry is elusive — let alone its quantum representations.

A related project is the description of BMSworld lines. The reader may recall that
we described inChap.5 a general procedure for buildingworld line actions associated
with arbitrary Lie groups, and that the application of this method to the Poincaré
group resulted in relativistic world lines. It is tempting to ask what happens when
that approach is applied to the BMS3 group; the answer is very natural: the resulting
action principle describes world lines propagating in the space of supertranslations,
which can equivalently be seen as relativistic world lines dressed with gravitational
degrees of freedom. Yet another way to think of these world-lines is to interpret
them as two-dimensional field theories dual to three-dimensional asymptotically flat
gravity, and indeed one finds that their partition functions coincide with gravitational
(one-loop) partition functions. These considerations should appear soon in a separate
publication [1]. Note that, as before, the application of these ideas to BMS in four
dimensions is much more problematic due to the lack of a proper definition of BMS4
symmetry.

http://dx.doi.org/10.1007/978-3-319-61878-4_5
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There is undoubtedly much more to be done in the future, both in toy models
such as three-dimensional gravity and in real-world, four-dimensional systems. In
the wake of the experimental observation of gravitational waves [2], it is likely that
new tools and methods will soon be required to understand and study gravity, both
classically and quantum-mechanically.On amore philosophical note, it is remarkable
that a question seemingly as simple as “what is a particle?” has an answer as intricate
and rich as what we have been attempting to describe in this thesis. We hope to have
contributed to a partial solution to the problem, and look forward to investigating
some of its future applications.
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A
A∗ (space of momenta), 69
Absolute time, 99
Action functional

differentiable, 244
for gravity, 242, 258
for higher spin field, 379, 405
on symplectic manifold, 132

Action of a group, 42
Adjoint representation, 111

of centrally extended group, 192
of Diff(S1), 169, 306
of semi-direct product, 142, 302

Adjoint vector, 112, 194
for BMS3, see bms3 algebra

ADM mass, 260
Admissible momentum, 409, 414
AdS radius, 251

as infrared regulator, 355
AdS3, 251, see also Brown-Henneaux

boundary, 253
conical deficit, 254
Killing vectors, 252
null infinity, 318

AdS/CFT, 7, 264
and coadjoint representation, 264
flat limit, 323
non-relativistic limit, 324

Advanced Bondi coordinates, 4, 290
Affine module, 31, 193

and quasi-regular reps, 48
Allowed gauge transformation, 248
Almost everywhere, 38, 39
Ambient construction, 255
Angular momentum, 143, 157, 260

in AdS3, 260
in flat space, 297

orbital versus spin, 144
Angular momentum aspect, 297
Angular potential, 157, 376
Angular supermomentum, 311
Angular velocity, 158
Annihilator, 145
Anomaly, 45, 48
Antilinear, 19
Antiperiodic, 405
Antiunitary, 19, 20
Anyon, 24, 97, 346
Asymptotic flatness, 4, see also BMS3 fall-

offs
Asymptotic Killing spinor, 411
Asymptotic Killing vector, 249

for AdS3, 256
for flat space, 293

Asymptotic quantization, 348
Asymptotic state, 54
Asymptotic symmetry, 1, 249

for AdS3, 257
for flat space, 294
for higher spins, 388, 392
for supergravity, 411
in the bulk, 258

Atiyah-Bott theorem, 60, 87
Average lemma, 232

B
Banach space, 39
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Bessel function, 381
Bigravity, 299
Black hole, 7, 263
BMS gauge, 292
BMS group, 2, 5, 348

extended, 6
in 3D, see BMS3 group

BMS particle, 9
in 4D, 348

BMS world line, 435
BMS3 central charge, 296, 335

as mass scale, 298
BMS3 character, 364

for vacuum representation, 368
universal, 366

BMS3 fall-offs, 292
angular momentum, 297
asymptotic Killing vector, 293
asymptotic symmetry algebra, 294
Hamiltonian, 297
on-shell metric, 295
phase space, 315
surface charge, 296
surface charge algebra, 297

BMS3 group, 8, 307
as flat limit, 320
at null infinity, 291
central extension, 308
coadjoint vector, 311
connected, 307
Kirillov–Kostant bracket, 312
Poincaré subgroups, 311
universal cover, 308

BMS3 metric, 295
as stress tensor, 312
orbit under BMS3, 317
positive energy, 318
zero-mode, 299

BMS3 momentum, see supermomentum
BMS3 particle, 330

as dressed particle, 343
as projective representation, 339
as quantized metric, 341, 375
energy spectrum, 358
mass, 333
scalar, 339
spin, 346
wavefunction, 338
with definite supermomentum, 340
with positive energy, 332

BMS3 stress tensor, 312, 316
as flat limit, 322

BMS3 surface charge, 296

BMS3 tachyon, 331
BMS3 vacuum, 344

with spin, 360
bms3 algebra, 294, 309

and gca2 algebra, 324
as flat limit, 321
Casimir operators, 356
centrally extended, 297, 310
cohomology, 313
induced module, 357
perfect, 313
supersymmetric version, 412

bms3 module, 356
as flat limit, 358
vacuum, 357

Bohr–Sommerfeld quantization, 133
Bondi coordinates, 3, 4, 288

globality, 295
Bondi mass (aspect), 297

as Virasoro energy functional, 230
Boost, 69, 83, 90, see also standard boost

acting on supermomentum, 334
as projective transformation, 236

Borel measure, 37
Bosonic partition function, 379, 382

in 3D, 385
massless limit, 384

Bott-Thurston cocycle, 181, 184
and Gelfand-Fuks, 182
and Schwarzian derivative, 186

Boundary, 244
Boundary conditions, see fall-off cond.
Boundary degree of freedom, 245
Boundary graviton, 265, 317, 344

dressing, 278
partition function, 279, 385
quantization, 278, 341

Boundary term, 244, 258
Bra, 18
Broken symmetry, 280
Brown–Henneaux central charge, 7, 259
Brown–Henneaux fall-offs, 255

angular momentum, 260
asymptotic Killing vector, 256
asymptotic symmetry group, 257
at null infinity, 318
Hamiltonian, 260
on-shell metric, 258
phase space, 263
surface charge, 259
symplectic leaves, 266

Brown–Henneaux metric, 258
as CFT stress tensor, 259, 264
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for BTZ black hole, 263
for conical deficit, 262
orbit under Virasoro, 265
positive energy, 267
zero-mode, 261

BRST, 48
BTZ black hole, 262

as quotient of AdS3, 263
Bundle of little group orbits, 148

C
c2 (BMS3 central charge), 296

as mass scale, 298, 335
not a Virasoro central charge, 298

Canonical symplectic form, 115, 150
Canonical system of imprimitivity, 63
Canonical transformation, 116
Cartan subalgebra, 35, 382, 421, 422
Casimir operator, 351

for bms3, 356
for sl(2, R), 270
for Virasoro, 271

Čech cohomology, 129
Celestial circle, 290
Celestial sphere, 3, 255
Central charge, 193, 196

Brown–Henneaux, 259
flat limit, 323
for Bargmann group, 101
for BMS3, 296, 335

Central extension, 21
adjoint representation, 192
classical, 120, 250
coadjoint representation, 193
Lie bracket, 193
of bms3 algebra, 310
of BMS3 group, 308
of Diff(S1), 194
of group, 21, 32
of Lie algebra, 28
of PSL(2, R), 191
of Vect(S1), 195
topological, 22, 23
trivial, 22, 28, 32
universal, 29, 33, 195

Centre of mass, 144
CFT vacuum, see Virasoro vacuum
Character, 58, see also Frobenius formula

and fixed points, 60
for BMS3, 364, 368
for flat WN , 396, 399
for hypersymmetric BMS3, 417

for induced representation, 58
for Poincaré, 87–89, 98
for semi-direct product, 76
for SL(2, R), 141
for SO(n), 382, 421, 427, 428
for supersymmetric BMS3, 416
for Virasoro, 275, 277, 279
for WN , 391
within partition function, 387

Chern–Simons theory, 245
Chevalley-Eilenberg differential, 25, 30
Circle, see S1

Class function, 58
Classical central extension, 120, 250

in AdS3, 259
in flat space, 296, 297

Classical flat W3 algebra, 392
Classical observable, 116
Classical spin, 147
Classical W3 algebra, 390
Classification

of BMS3 particles, 331
of coadjoint orbits, 149, 203
of particles, 76
of projective reps, 24
of Virasoro reps, 274

Clifford algebra, 410, 414
Closed time-like curve, 251, 254, 263
Coadjoint orbit, 112

as cotangent bundle, 146
as symplectic leaf, 117
classification, 149
integrality condition, 130
momentum map, 121
of Diff(S1), 202
of Poincaré group, 154
of semi-direct product, 144, 148
of SL(2, R), 139
of Virasoro group, 204
scalar, 145
spinning, 146

Coadjoint representation, 112
in gravity, 264, 315
of BMS3, 312
of centrally extended group, 193
of Diff(S1), 174
of semi-direct product/sum, 144
of Virasoro group/algebra, 196
of W3 algebra, 389

Coadjoint vector, 112
for BMS3, 311
for semi-direct product, 143, 304
for Virasoro, 196
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Cochain
Lie derivative, 177
local, 178, 182
on group, 29
on Lie algebra, 25

Cocycle
differentiation, 31
integration, 32
on group, 30
on Lie algebra, 26
trivial, 26, 30

Cocycle condition, 21, 181
Codimension parity, 203
Cohomology

interpretation, 30
non-local, 179
of bms3, 313
of groups, 30
of Lie algebras, 26
of Vect(S1), 176, 178, 182

Commutator, 33, 126
Complete homogeneous symmetric polyno-

mial, 417
Complete metric space, 18
Completeness relation, 55
Complex rotation, 363
Composition, 165
Conformal compactification, 245, 255, 348
Conformal field theory, 6, see alsoAdS/CFT
Conformal Killing vector, 5
Conformal transformation, 257, see also

Möbius transformation
Conformal weight, 171
Conical deficit, 254, 262, 291, 299
Conjugacy class, 58, 209

elliptic/hyperbolic/parabolic, 214
Conjugate representation, 53
Connected BMS3 group, 307
Connected Lorentz group, 79
Connected Poincaré group, 80
Connection, 124
Conserved superpotential, 247
Constraint, 155
Continuous representation, 21
Continuous spin, 85

for BMS particles, 348
Contragredient representation, 71
Coordinates

Bondi, 3, 4, 288
cylindrical, 251
light-cone, 253
on orbit, 367

Correspondence principle, 126

Coset space, see quotient space
Cosmic censorship, 263, 299
Cosmological constant, 252
Cotangent bundle, 114

momentum map, 122
of momentum orbit, 146
tangent space, 149

Cotangent space, 145
Counting degrees of freedom, 243
Covariant derivative, 124
Covariant phase space, 263

as coadjoint representation, 264
Cross product, 143, 304, 305
Cross ratio, 189
Curvature of a connection, 125
Cylindrical coordinates, 251, 288

D
Darboux theorem, 115
Dedekind eta function, 277
Deformation of Lie algebra, 27
Degenerate conical deficit, 259, 296
Degenerate parabolic matrix, 215
Degrees of freedom, 243, 388
Delta function, 53, 340, 364
Density matrix, 91
Density on the circle, 171
De Rham cohomology, 26
Derivation, 113

of Lie algebra, 26
Descendant state, 273

for sl(2, R), 269
3D gravity, 243

dimensional reduction, 245
no local degrees of freedom, 388
partition function, 279, 385

Diffeomorphism, 165
infinitesimal, 169

Differentiable action, 244
for AdS3 gravity, 258

Differential, 110
for group, 30
for Lie algebra, 25

Differentiation of cocycles, 31
Diff(S1), 165

action on one-forms, 171
adjoint representation, 169, 306
central extension, see Virasoro group
coadjoint orbit, 202
coadjoint representation, 174
cohomology, 183
connected components, 167
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exponential map, 175
fundamental group, 167
orientation-preserving, 165
superrotation, 306
universal cover, 167

Diff(S1)/S1, 202
Dimensional analysis, 101, 366
Dimensional reduction, 245
Dimensionful central charge, 101, 296, 335
Dirac distribution, see delta function
Direct integral, 70
Discrete spin, 85
Disintegration of a measure, 345
Distribution, 173
Double zero, 202
Dressed particle, 278
Dual representation, 71
Dual space, 69, 172
Dual stress tensor, 316

E
Einstein–Hilbert action, 242

variation, 244
Electric charge, 247
Elliptic matrix, 214
Elliptic Virasoro orbit, 216
Energy functional, 230

on elliptic Virasoro orbit, 235
on parabolic Virasoro orbit, 237
on vacuum Virasoro orbit, 235
unbounded, 238

Energy-momentum, 80
Energy spectrum, 358
Entanglement, 40

due to Wigner rotations, 92
Equations of motion

for gravitational field, 242
on Poisson manifold, 113

Equivalent measures, 41
and representations, 47

Equivalent representations, 64
Equivariant function, 166
Erlangen programme, 8
Euclidean group, 69
Euclidean time, 378
Euler–Poisson equation, 117
Exact representation, 21
Exceptional constant, 205, 219

deformation, 223, 227
Exceptional semi-direct product/sum, 301,

393
Exhaustivity theorem, 76, 274

Existence and uniqueness, 164
Exponential map, 111

for Diff(S1), 175
Extended BMS group, 6, 350

in 3D, see BMS3
Extreme conical deficit, 254
Extrinsic curvature, 258

F
Fabri-Picasso theorem, 280
Fall-off conditions, 244

BMS3, 292
Brown–Henneaux, 255

Fang-Fronsdal action, 405
Farey tail, 279
Fefferman–Graham expansion, 255, 258
Fermion, 23

heat kernel, 406
higher spin, 405
partition function, 405, 407

Fh(S1) (space of densities), 171
dual space, 173

Fibre bundle, 124
Finite measure, 36
Fixed point, 60, 87
Flat connection, 125
Flat limit, 319

as ultrarelativistic limit, 355
of AdS/CFT, 323
of highest-weight reps, 354
of normal ordering, 401
of sl(2, R), 353
of Virasoro character, 365
of Virasoro group, 320
of Virasoro reps, 358
of W3 algebra, 400
of Witt algebra, 321

Flat space cosmology, 299
Flat space holography, 8, 323

modular transformations, 365
Flat W3 algebra, 392, 401

character, 396
Galilean version, 402
induced representation, 393, 403
little groups, 394
vacuum module, 403

Flat WN algebra, 397
vacuum character, 399

Flow, 116, 175
Foliation, 114
Forbidden gauge transformation, 248
Fourier series, 198, 363
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Fréchet space, 164
Free boundary conditions, 261
Free particle, 157
Frobenius formula, 58, 362, see also charac-

ter
and fixed points, 60
for semi-direct products, 76

Frobenius’ theorem, 114
Fronsdal action, 379
Functional determinant, 376, 380, 381, 405,

407
Fundamental group

of Diff(S1), 167
of Lie group, 23

Fundamental representation, 410
Fundamental vector field, see infinitesimal

generator

G
G � A, see semi-direct product
Galilean conformal algebra, see gca2
Galilean flat W3 algebra, 402
Galilean highest-weight reps, 359
Galilean limit, see non-relativistic limit
Galilean particle, 98, 102, 156
Galilean vacuum, 360
Galilei group, 98, see also Bargmann group

projective representation, 103
γ -tracelessness, 406
Gauged Sigma model, 137
Gauge transformation, 248, 379, 383
gca2, 324, 359

higher spin version, 402
Gelfand-Fuks cocycle, 176

and Bott-Thurston, 182
Generic constant, 205, 217
Geometric action functional, 132

and gauge invariance, 138
and Maurer–Cartan form, 136
as non-linear Sigma model, 136
for semi-direct product, 153
on group, 136

Geometric quantization, 56
and boundary gravitons, 278, 341
and line bundles, 129
and unitary reps, 130, 152, 271

Ghost, 383, 388, 405
Gibbons–Hawking term, 245, 258
Global BMS group, 5, 348

in 3D, 349
Godbillon-Vey cocycle, 178
Goldstone boson, 280

Gram matrix, 274
Gravitational dressing, 335, 343
Gravitational wave, 243, 436
Gravitino, 413
Gravity in 3D, 9, 243
Group, 19

central extension, 21, 32
perfect, 33
simply connected, 22

Group action, 42
Hamiltonian, 120
symplectic, 119

H
Haar measure, 44
Hamiltonian, 57, 113

in AdS3, 260
in flat space, 297

Hamiltonian group action, 120
Hamiltonian vector field, 113, 115
Harmonic analysis, 51
Harmonic oscillator, 141, 159
Heat kernel, 377, 406

traceless, 379
Heisenberg algebra, 29
Heisenberg group, 32, 99
Hermitian operator, 18
Hermitian structure, 125
Hermiticity conditions

for BMS3, 355
for flat W3, 401
for Poincaré, 351
for sl(2, R), 269
for Virasoro, 272
for W3, 390

Higher spin, 378, 405
asymptotic symmetries, 388, 392
partition function, 385, 392, 407
supermomentum, 397
surface charge, 389, 392
vacuum configuration, 397

Highest-weight representation, 358, 382
at c ≤ 1, 274
by quantization, 271
character, 275, 276
exhaustivity, 274
flat limit, 354
of gca2, 359
of sl(2, R), 269
of Virasoro, 273
unitarity, 274
vacuum, 274
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Hilbert space, 17
ray, 18
rigged, 55

Hill’s equation, 207
inequivalent solutions, 211
monodromy, 208

Holography, 7
and topological field theories, 245
in AdS3, 264
in flat space, 8, 323

Holonomy, 52
Homogeneous space, 43

as coset space, 49
Homotopy, 167
Hot flat space, 378
Hyperbolic matrix, 214
Hyperbolic Virasoro orbit, 221, 222
Hypergravity, 416

I
I + (future null infinity), 290
iε regularization, 363, 365, 368, 381, 385,

408
Imprimitivity, 62
Improved action, 258
Induced module, 350, 352, 353, 357

flat limit, 355
for bms3 algebra, 357
for flat W3 algebra, 403
for Poincaré algebra, 352
for Virasoro algebra, 273

Induced representation, 50, 347
and imprimitivity, 62
character, 58
equivalence, 64
exhaustive, 76
in terms of fcts on a group, 51
in terms of plane waves, 56, 76
irreducible, 64
notation, 50
of Bargmann group, 103
of BMS3, see BMS3 particle
of flat W3 algebra, 393
of Lie algebra, see induced module
of Poincaré group, 84
of semi-direct product, 73, 75
of super semi-direct product, 409

Induction in stages, 53
Induction-reduction theorem, 342
Inertia operator, 118
Inertial coordinates, 288
Infinite spin, 85

Infinite-dimensional group, 164, 308
Infinitesimal cocycle, 31
Infinitesimal generator, 119
Infinitesimal Schwarzian derivative, 183
Infinitesimal Souriau cocycle, 192
Infinitesimal transformation, 172
Infinity, 244, 253
Inhomogeneous Lorentz group, see Poincaré

group
Inönü-Wigner contraction, 100, 322
Integral curve, 111, 174
Integral symplectic form, 129
Integration of cocycles, 32
Intertwiner, 47, 52, 64
Invariant measure, 44
Invariant polarization, 130
Invariant vector, 26, 30
Irreducible representation, 64, 403
Isometry algebra, 253, 289
Iwasawa decomposition, 93

J
Jacobian, 45

and delta functions, 54
Jacobi identity, 113

K
Kac–Moody algebra, 182
Kac–Moody level, 133
Ket, 18
Killing vector, 252, 288
Kirillov–Kostant bracket, 116

applied to AdS3, 264
for BMS3, 312
for SL(2, R), 139
for Virasoro, 198

Kirillov–Kostant symplectic form, 118
and Maurer–Cartan, 135
for semi-direct product, 150
for SL(2, R), 140
for Virasoro, 271

Korteweg-de Vries equation, 118

L
L2 space, 39
Lagrange multiplier, 154
Large central charge, 271
large � limit, 319
Leaking wavefunction, 342
Lebesgue integral, 37
Lefschetz number, 60, 87



444 Index

Left-invariant vector field, 110
Legendre transformation, 155
Leibniz rule, 113, 124
Level (of descendant state), 269, 273
Lie algebra, 110

deformation, 27
of BMS3, see bms3
of Poincaré in 3D, 289
perfect, 26
representation, 25

Lie bracket, 110
for centrally extended algebra, 193
for semi-direct sum, 142, 303
of vector fields, 170

Lie derivative, 177, 254
Lie-Fréchet group, 164, 308
Lie group, 110
Lift (of diffeomorphism), 167
Light-cone coordinates, 253

Minkoswki metric, 257
Light-like infinity, see null infinity
Light-like vector, 78
Line bundle, 74, 124
Liouville one-form, 115, 150
Liouville theory, 245
Liouville volume form, 114
Little group, 72, see also stabilizer

for BMS3 particle, 332
for flat W3, 394
for higher spin vacuum, 397
for non-relativistic particle, 102
for relativistic particle, 81, 96
fundamental representation, 410

Local cochain, 178, 182
Localization, 60, 362, 367
Lorentz group, 2, 5, 78

as projective group, 189
at null infinity, 291
in 3D, 94
topology, 79

Lorentz-invariant delta function, 54
Lorentz-invariant measure, 38

M
Map of Virasoro orbits, 228, 239
Mass, 9

as central charge, 101
in AdS3, 260
in flat space, 297
of BMS3 particle, 333

Mass gap, 263
MassiveBMS3 particle, 331, see also elliptic

Virasoro orbit

character, 364
factorization, 345

Massive bms3 module, 357
Mass operator, 333, 356
Mass shell, 155
Mass squared, 81, 351

for BMS3, 333, 356
Massive particle, 81, 84, 103

in 3D, 97
partition function, 89

Massless BMS3 particle, 331, see also par-
abolic Virasoro orbit

Massless particle, 82, 85, 102
in 3D, 97
partition function, 89

Maurer–Cartan form, 133
and geometric action, 136
and Kirillov–Kostant, 135
for semi-direct product, 153

Maximal torus, 35
Maximally symmetric, 242, 252, 288
Measure, 36

disintegration, 345
equivalence, 41
invariant, 44
Lorentz-invariant, 38
on Virasoro orbit, 336, 364, 367
projection-valued, 61
quasi-invariant, 44

Method of images, 377, 380, 406
Metric, see AdS3, Minkowski space, on-

shell metric
Milne universe, 299
Minkowski space, 2, 78, 288

as homogeneous space, 288
light-cone coordinates, 257

Möbius transformation, 5, 189
Modave, 109
Modified Lie bracket, 258
Modular parameter, 279
Modular transformation, 365
Momentum, 70, 143

admissible, 409
eigenstate, see plane wave
for Bargmann group, 100
for BMS3, see supermomentum
for Poincaré group, 80
map, 119
orbit, 72, 81, 146

Monodromy, 208
as bms3 Casimir, 356
as Wilson loop, 210
projective, 212
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Multiplet, 410
Multiply connected, 23

N
Neveu–Schwarz sector, 411
New massive gravity, 243, 261, 299
Newton constant, 242
Newton identities, 418
Nilpotent, 25
Noether’s theorem, 121, 246
No gravitons in 3D, 243, 388

Hamiltonian counting, 243
Non-linear Sigma model, 136
Non-local cohomology, 179
Non-relativistic limit, 324, 360, 401
Non-relativistic mass, 101
Non-relativistic particle, 98, 102, 156
Non-trivial gauge transformation, 248
Non-unitary representation, 360
Normal ordering, 360, 391, 403

flat limit, 401
Normal subgroup, 68
Null infinity, 3, 290

for AdS3, 318
Poincaré transformations, 291

Null orbifold, 296, 299
Null state, 39, 274
Null string, 361
Null vector, 78

O
O(2, 2), 251
Observable, 116, 126
One-cocycle, 30

anomaly, 48
Radon–Nikodym derivative, 47
Schwarzian derivative, 185
Souriau, 185

One-form, 171
One-loop determinant, 381, 407
One-loop exactness, 279, 386
One-loop partition function, see partition

function
One-particle state, see particle
On-shell metric, 258, 295
Open set, 37, 128, 132, 203
Orbifold, 296, 386
Orbit, 42, 72

coordinates, 364, 367
for BMS3, 331
for Poincaré, 81
representative, 76

Orbit method, 56
Orbital angular momentum, 144
Orientation-preserving, 165
Orthochronous Lorentz group, 79

P
p0 (constant supermomentum), 205

exceptional, 219
generic, 217

Parabolic matrix, 214
Parabolic Virasoro orbit, 226

and exceptional constants, 219
by deformation of a constant, 227
degenerate, 219
energy functional, 237
non-degenerate, 225

Parity, 165, 288
Particle, 9

as induced representation, 74
by geometric quantization, 152
classification, 76
dressed with gravitons, 278
in AdS3, 278
scalar, 73
spinning, 75
with definite momentum, 76

Partition function, 57, 157, 376, 387
for 3D gravity, 279, 385
for fermions, 405, 407
for higher spins, 392, 396, 399, 407
for hypergravity, 417
for massive particle, 89, 98
for supergravity, 416

Partition of integers, 273
Path integral, 157, 376
Penrose diagram, 3, 252
Perfect group, 33
Perfect Lie algebra, 26, 313

universal central extension, 29
PGL(2, R), see PSL(2, R)

Phase space, 112
as coadjoint representation, 264, 315
covariant, 263
foliation, 266

2πZ-equivariance, 166
Planck mass, 242, 296, 335
Plane wave, 54, 76, 340
p(N ) (partition of integers), 273
Poincaré algebra, 289, 351
Poincaré character, 87

in a partition function, 387
in 3D, 98
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Poincaré group, 2, 69, 80, 288
at null infinity, 291
coadjoint orbits, 154
embedded in BMS3, 311
in 3D, 95
topology, 80

Poincaré momentum, 80
Poincaré vacuum, 84
Point at infinity, 188
Point mass, 254
Point particle, 263
Point transformation, 122
Poisson algebra, 113
Poisson bracket, 113, 115

and commutator, 126
Polarization, 127, 129, 130
Polarized observable, 127
Positive energy theorem, 267, 317

for BMS3 particles, 332
Prequantization, 126, 129
Primary field, 171
Primary state, 273, 358
Principal bundle, 49
Projection-valued measure, 61
Projective group, 20, 189
Projective line, 187
Projective monodromy, 212
Projective representation, 21

classification, 24
of BMS3, 339
of Galilei group, 103
of SL(2, R), 270
of U(1), 23

Projective space, 18
Projective transformation, 188

boost, 236
Projector, 60
Propagator, 105, 158
Proper Lorentz group, 79
PSL(2, R), 94, 189

n-fold cover, 191, 220
two-cocycle, 191

Pullback, 116
Pure boost, 83, 90, 236

Q
Quantization conditions, 129

from path integral, 133
Quantum flat W3 algebra, 400
Quantum gravity, 434

and BMS3 particles, 341
Quantum state, 18

Quantum W3 algebra, 390
Quasi-invariant measure, 44

on Virasoro orbit, 336
Quasi-primary field, 197
Quasi-regular representation, 46

as affine module, 48
Quotient of AdS3, 263
Quotient space, 43, 49, 377

of AdS3, 263
thermal, 376

R
Radon–Nikodym derivative, 41, 44

as anomaly, 45
as cocycle, 47

Radon–Nikodym theorem, 41
Ramond sector, 411
Ray, 18
Reduced density matrix, 91
Regge calculus, 386
Regular dual, 173
Regular representation, 47
Regular semi-direct product, 77, 337
Relative cocycle, 190
Relativistic momentum, 80
Relativistic particle, see particle
Representation, 20

adjoint, 111
by quantization, 152
conjugate, 53
continuous, 21
dual, 71
geometrization, 56
induced, 50
irreducible, 64, 403
non-unitary, 360
of BMS3, see BMS3 particle
of Lie algebra, 25
of Poincaré, see particle
of semi-direct product, 73, 76
of , see highest-weight representation
of super semi-direct product, 409
of vector group, 69
ofVirasoro, see highest-weight represen-
tation

projective, 21
quasi-regular, 46
regular, 47
unitary, 20

Rest frame, 81, 102, 352, 357
for flat W3 algebra, 402

Retarded Bondi coordinates, see Bondi co-
ordinates



Index 447

Retarded time, 3, 288
Riemann tensor, 242
Rigged Hilbert space, 55
Rigid rotation, 165
R
n , 37, 41

Robustness of induced reps, 52
Rotation, 69, 85

action on momenta, 71
action on supermomenta, 363

RP1 (projective line), 187

S
S1 (circle), 165

as projective line, 187
projective transformation, 189
stereographic coordinate, 188
universal cover, 24, 165

Saddle point approximation, 376
Scalar particle, 73, 339
Scalar product, 39
Schwarzian derivative, 184

and Bott-Thurston, 186
as one-cocycle, 185
as Souriau cocycle, 186
average lemma, 232
cocycle identity, 185
infinitesimal, 183
PSL(2, R)-invariant, 190

Section, 124
Self-adjoint operator, 18
Semi-classical limit, 271

in symplectic geometry, 131
Semi-direct product, 2, 68

adjoint representation, 142
and space-time, 153
character, 76
coadjoint orbit, 144, 148
coadjoint representation, 144
coadjoint vector, 143
exceptional, 301
geometric action functional, 153
Kirillov–Kostant form, 150
Maurer–Cartan form, 153
quantization conditions, 150
regular, 77, 337
unitary representations, 76

Semi-direct sum, 142
coadjoint representation, 144
exceptional, 302
Lie bracket, 142

Separable Hilbert space, 18
σ -additivity, 36, 61

σ -finite measure, 36
Sigma model, 136, 153
Simple zero, 203
Simply connected, 22
SL(2, C), 5
SL(2, R), 93

and harmonic oscillators, 141

and SO(2, 1)

(
, 94

character, 141
coadjoint orbits, 139
conjugacy classes, 214
Iwasawa decomposition, 93
Kirillov–Kostant bracket, 139
Kirillov–Kostant form, 140
projective representation, 270
topology, 93

sl(2, R), 94, 138, 253, 268
Casimir operator, 270
commutation relations, 138
descendant state, 269
flat limit, 353
Hermiticity conditions, 269
highest-weight representation, 269
ultrarelativistic limit, 355

Smooth dual, 173
SNAG theorem, 77

SO(2, 1)

(
, 79, 94

SO(2, 2), 251
so(2, 2), 253
Soft graviton, 9, 343, 349
Solution vector, 209
so(n)

Cartan subalgebra, 421, 422
character, 382, 421, 427, 428
highest weight, 382

Souriau cocycle, 185
and Schwarzian derivative, 186
infinitesimal, 192

Space-like vector, 78
Spatial infinity, 253
Spherical harmonic, 5
Spin, 9, 84, 103

classical, 147
for BMS3 particle, 346

Spin angular momentum, 144
Spin group, 79
Spinning particle, 75
Spinning vacuum, 84

for BMS3, 360
Spin-statistics, 23
Square integrability, 38
Stabilizer, 43, 72, see also little group
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for Virasoro coadjoint vector, 204
Standard boost, 49, 52, 217

for BMS3, 347
for Poincaré, 83

Standard decomposition theorem, 79
Stereographic coordinate, 3, 188
Stokes’ theorem, 244
Strength tensor, 247
Stress tensor, 196

dual, 316
for BMS3-invariant theories, 312
transformation law, 197

Structure constant, 110
Sturm-Liouville operator, 207
super bms3 algebra, 412
super BMS3 character, 416
super BMS3 multiplet, 415
Super centre of mass, 312
Super Lie group, 409
Super Virasoro algebra, 411
Super Witt algebra, 411
Superboost, 307, see also superrotation
Supergravity, 411
Supermomentum, 311, 330

admissible, 414
angular, 311
for higher spins, 397
for moving particle, 334
gravitational dressing, 335
Lorentz-inequivalent, 341
massless, 226
tachyonic, 223
transformation under boosts, 334

Supermomentum orbit, 331
coordinates, 364, 367
for higher spins, 393

Supermultiplet, 410, 415
Superpotential, 247
Superrotation, 6, 294, 306, 307
Supertranslation, 2, 5, 294, 307, 308
Surface charge, 247, 248

algebra, 260, 297
as dual Noether charge, 260
as symmetry generator, 249
for 3D supergravity, 412
for higher spins, 389, 392
for superrotation, 297
for supertranslation, 297
in AdS3, 259
in flat space, 296

Symmetrization, 379
Symmetry, 1, 19

and unitarity, 9

asymptotic, see asymptotic symmetry
Symmetry enhancement, 6
Symmetry generator, 249
Symmetry representation thm, 9, 19
Symplectic form, 114

integral, 129
Symplectic group action, 119
Symplectic induction, 150
Symplectic leaf, 114, 393

in AdS3, 266
in flat space, 317

Symplectic manifold, 114
codimension parity, 203

Symplectomorphism, 116
System of imprimitivity, 62

T
Tachyon, 82, 85
Tachyonic BMS3 particle, 223, 331, see also

hyperbolic Virasoro orbit
Tensor algebra, 410
Tensor product, 40, 345
Thermal quotient, 376
Thomas precession, 91, see also Wigner ro-

tation
Three-dimensional gravity, see 3D gravity
Time slicing, 157
Time-like vector, 78
Topological central extension, 23
Topological field theory, 243

and holography, 245
Topologicallymassive gravity, 243, 261, 299
Traceless heat kernel, 379
Transitive action, see homogeneous space
Translation, 1, 69, 290
Trivial bundle, 49, 124
Trivial central extension, 22, 28, 32
Trivial cocycle, 26, 30
Trivial gauge transformation, 248
Twisted derivative, 179, 180, 183
Two-cocycle, see central extension

U
U(1), 23
Ubiquitousness of induced reps, 35
Ultrarelativistic limit, 355, see also flat limit
Uncertainty principle, 124
Unitary representation, 20, see also induced

representation
by quantization, 130, 152
of BMS3, see BMS3 particle
of Poincaré, see particle
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of vector group, 69
Universal central extension, 29, 33, 195
Universal cover, 23

of BMS3 group, 308
of Diff(S1), 167
of Lorentz group, 79
of Poincaré group, 80
of S1, 24, 165

Universal Teichmüller space, 219
Universality, 366

V
Vacuum character

for BMS3, 368
for flat W3, 396
for flat WN , 399
for Virasoro, 277
for WN , 391

Vacuum coadjoint vector, 205
Vacuum module

for bms3 algebra, 357
for flat W3 algebra, 403
for Virasoro algebra, 274, 275

Vacuum orbit
energy, 235
for BMS3, 344
for Virasoro, 219

Vacuum with spin, 84
Van Est theorem, 32
Variation of action functional, 244
Vector bundle, 124
Vector field

generating asymptotic symmetries, see
asymptotic Killing vector

Hamiltonian, 113, 115
left-invariant, 110

Vector group, 68
unitary representation, 69

Vect(S1), 169
cohomology, 176, 178, 182
supersymmetric version, 411

Verma module, 273
Virasoro algebra, 195

Casimir operators, 271
character, 275
coadjoint representation, 197
commutation relations, 195
descendant state, 273
Hermiticity conditions, 272
highest-weight rep, 273, 358
non-relativistic limit, 360
supersymmetric version, 411

Virasoro character, 276
Virasoro cocycle, see Gelfand-Fuks
Virasoro energy, 230

on parabolic orbits, 237
on vacuum orbit, 235
unbounded from above, 231

Virasoro group, 194
coadjoint orbit, 203
coadjoint representation, 196
flat limit, 320
Kirillov-Kostant bracket, 198

Virasoro measure, 336
Virasoro orbits, 204

classification, 213
Kirillov–Kostant form, 271
map, 228, 239
massless, 227
measure, 336
quantization, 271
stabilizer, 229
with constant representative, 229
with positive energy, 235, 238

Virasoro stabilizer, 204, 210
Virasoro vacuum, 205, 274

character, 277, 279
descendant state, 275

W
W3 algebra, 390

flat limit, 400
non-relativistic limit, 401

WN algebra
character, 391
coadjoint representation, 389

Warped CFT, 70, 183, 184, 304
Wavefunction, 38, 338

in momentum space, 73
on group manifold, 51
scalar product, 39

Wavefunctional, 339
Wedge algebra, 391, 403
Weight, 171
Wess–Zumino–Witten model, 133
Whitehead’s lemma, 27
Wigner rotation, 51, 75, 91, 346

as holonomy, 52
producing entanglement, 92

Wilson loop, 210
Winding number, 213

for elliptic Virasoro orbit, 218
Witt algebra, 170, 257

flat limit, 321
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non-relativistic limit, 324
supersymmetric version, 411

World line, 153, 154
for BMS3 particle, 435
non-relativistic, 156
on coadjoint orbit, 136
on symplectic manifold, 132

World line formalism, 156
Wronskian, 208

Z
Z-equivariance, 166
Zero-mode metric, 261, 299
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